Some Polynomial Conditions for Cyclic Quadrilaterals, Tilted Kites and Other Quadrilaterals
In this paper, we investigate some polynomial conditions that arise from Euclidean geometry. First we study polynomials related to quadrilaterals with supplementary angles, this includes convex cyclic quadrilaterals, as well as certain concave quadrilaterals. Then we consider polynomials associated...
Gespeichert in:
Veröffentlicht in: | Mathematics in computer science 2023-12, Vol.17 (3-4), Article 24 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3-4 |
container_start_page | |
container_title | Mathematics in computer science |
container_volume | 17 |
creator | Santoprete, Manuele |
description | In this paper, we investigate some polynomial conditions that arise from Euclidean geometry. First we study polynomials related to quadrilaterals with supplementary angles, this includes convex cyclic quadrilaterals, as well as certain concave quadrilaterals. Then we consider polynomials associated with quadrilaterals with some equal angles, which include convex and concave tilted kites. Some of the results are proved using Groebner bases computations. |
doi_str_mv | 10.1007/s11786-023-00574-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2893554993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2893554993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-dfdf18fe593778214c4e515cc5514fc04239cc4a5886cab9f844b6533e90aa163</originalsourceid><addsrcrecordid>eNp9kM1OAyEUhYnRxFp9AVckbkVhgAGWZuJfNKnGunJBKANKMx0qTBd9e9Exmrhwde_iO-eeewA4JviMYCzOMyFC1ghXFGHMBUNiB0xIXRMkK6l2f3aB98FBzkuM64owMgEvT3Hl4EPstn1cBdPBJvZtGELsM_QxwWZru2Dh48a0KXRmcMl0-RTOQze4Ft6FwWVo-hbOhjeX_mCHYM-X4Y6-5xQ8X13Omxt0P7u-bS7ukS15BtT61hPpHVdUCFliWeY44dZyTpi3mFVUWcsMl7K2ZqG8ZGxRc0qdwsaQmk7Byei7TvF94_Kgl3GT-nJSl-cp50wpWqhqpGyKOSfn9TqFlUlbTbD-LFGPJepSov4qUYsioqMoF7h_denX-h_VB92VdOs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893554993</pqid></control><display><type>article</type><title>Some Polynomial Conditions for Cyclic Quadrilaterals, Tilted Kites and Other Quadrilaterals</title><source>SpringerLink Journals</source><creator>Santoprete, Manuele</creator><creatorcontrib>Santoprete, Manuele</creatorcontrib><description>In this paper, we investigate some polynomial conditions that arise from Euclidean geometry. First we study polynomials related to quadrilaterals with supplementary angles, this includes convex cyclic quadrilaterals, as well as certain concave quadrilaterals. Then we consider polynomials associated with quadrilaterals with some equal angles, which include convex and concave tilted kites. Some of the results are proved using Groebner bases computations.</description><identifier>ISSN: 1661-8270</identifier><identifier>EISSN: 1661-8289</identifier><identifier>DOI: 10.1007/s11786-023-00574-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Angles (geometry) ; Computer Science ; Euclidean geometry ; Kites ; Mathematics ; Mathematics and Statistics ; Polynomials ; Quadrilaterals</subject><ispartof>Mathematics in computer science, 2023-12, Vol.17 (3-4), Article 24</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-dfdf18fe593778214c4e515cc5514fc04239cc4a5886cab9f844b6533e90aa163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11786-023-00574-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11786-023-00574-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Santoprete, Manuele</creatorcontrib><title>Some Polynomial Conditions for Cyclic Quadrilaterals, Tilted Kites and Other Quadrilaterals</title><title>Mathematics in computer science</title><addtitle>Math.Comput.Sci</addtitle><description>In this paper, we investigate some polynomial conditions that arise from Euclidean geometry. First we study polynomials related to quadrilaterals with supplementary angles, this includes convex cyclic quadrilaterals, as well as certain concave quadrilaterals. Then we consider polynomials associated with quadrilaterals with some equal angles, which include convex and concave tilted kites. Some of the results are proved using Groebner bases computations.</description><subject>Angles (geometry)</subject><subject>Computer Science</subject><subject>Euclidean geometry</subject><subject>Kites</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><subject>Quadrilaterals</subject><issn>1661-8270</issn><issn>1661-8289</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OAyEUhYnRxFp9AVckbkVhgAGWZuJfNKnGunJBKANKMx0qTBd9e9Exmrhwde_iO-eeewA4JviMYCzOMyFC1ghXFGHMBUNiB0xIXRMkK6l2f3aB98FBzkuM64owMgEvT3Hl4EPstn1cBdPBJvZtGELsM_QxwWZru2Dh48a0KXRmcMl0-RTOQze4Ft6FwWVo-hbOhjeX_mCHYM-X4Y6-5xQ8X13Omxt0P7u-bS7ukS15BtT61hPpHVdUCFliWeY44dZyTpi3mFVUWcsMl7K2ZqG8ZGxRc0qdwsaQmk7Byei7TvF94_Kgl3GT-nJSl-cp50wpWqhqpGyKOSfn9TqFlUlbTbD-LFGPJepSov4qUYsioqMoF7h_denX-h_VB92VdOs</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Santoprete, Manuele</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>Some Polynomial Conditions for Cyclic Quadrilaterals, Tilted Kites and Other Quadrilaterals</title><author>Santoprete, Manuele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-dfdf18fe593778214c4e515cc5514fc04239cc4a5886cab9f844b6533e90aa163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Angles (geometry)</topic><topic>Computer Science</topic><topic>Euclidean geometry</topic><topic>Kites</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><topic>Quadrilaterals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santoprete, Manuele</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematics in computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santoprete, Manuele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some Polynomial Conditions for Cyclic Quadrilaterals, Tilted Kites and Other Quadrilaterals</atitle><jtitle>Mathematics in computer science</jtitle><stitle>Math.Comput.Sci</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>17</volume><issue>3-4</issue><artnum>24</artnum><issn>1661-8270</issn><eissn>1661-8289</eissn><abstract>In this paper, we investigate some polynomial conditions that arise from Euclidean geometry. First we study polynomials related to quadrilaterals with supplementary angles, this includes convex cyclic quadrilaterals, as well as certain concave quadrilaterals. Then we consider polynomials associated with quadrilaterals with some equal angles, which include convex and concave tilted kites. Some of the results are proved using Groebner bases computations.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11786-023-00574-7</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1661-8270 |
ispartof | Mathematics in computer science, 2023-12, Vol.17 (3-4), Article 24 |
issn | 1661-8270 1661-8289 |
language | eng |
recordid | cdi_proquest_journals_2893554993 |
source | SpringerLink Journals |
subjects | Angles (geometry) Computer Science Euclidean geometry Kites Mathematics Mathematics and Statistics Polynomials Quadrilaterals |
title | Some Polynomial Conditions for Cyclic Quadrilaterals, Tilted Kites and Other Quadrilaterals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A09%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Polynomial%20Conditions%20for%20Cyclic%20Quadrilaterals,%20Tilted%20Kites%20and%20Other%20Quadrilaterals&rft.jtitle=Mathematics%20in%20computer%20science&rft.au=Santoprete,%20Manuele&rft.date=2023-12-01&rft.volume=17&rft.issue=3-4&rft.artnum=24&rft.issn=1661-8270&rft.eissn=1661-8289&rft_id=info:doi/10.1007/s11786-023-00574-7&rft_dat=%3Cproquest_cross%3E2893554993%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2893554993&rft_id=info:pmid/&rfr_iscdi=true |