Some Polynomial Conditions for Cyclic Quadrilaterals, Tilted Kites and Other Quadrilaterals

In this paper, we investigate some polynomial conditions that arise from Euclidean geometry. First we study polynomials related to quadrilaterals with supplementary angles, this includes convex cyclic quadrilaterals, as well as certain concave quadrilaterals. Then we consider polynomials associated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics in computer science 2023-12, Vol.17 (3-4), Article 24
1. Verfasser: Santoprete, Manuele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3-4
container_start_page
container_title Mathematics in computer science
container_volume 17
creator Santoprete, Manuele
description In this paper, we investigate some polynomial conditions that arise from Euclidean geometry. First we study polynomials related to quadrilaterals with supplementary angles, this includes convex cyclic quadrilaterals, as well as certain concave quadrilaterals. Then we consider polynomials associated with quadrilaterals with some equal angles, which include convex and concave tilted kites. Some of the results are proved using Groebner bases computations.
doi_str_mv 10.1007/s11786-023-00574-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2893554993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2893554993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-dfdf18fe593778214c4e515cc5514fc04239cc4a5886cab9f844b6533e90aa163</originalsourceid><addsrcrecordid>eNp9kM1OAyEUhYnRxFp9AVckbkVhgAGWZuJfNKnGunJBKANKMx0qTBd9e9Exmrhwde_iO-eeewA4JviMYCzOMyFC1ghXFGHMBUNiB0xIXRMkK6l2f3aB98FBzkuM64owMgEvT3Hl4EPstn1cBdPBJvZtGELsM_QxwWZru2Dh48a0KXRmcMl0-RTOQze4Ft6FwWVo-hbOhjeX_mCHYM-X4Y6-5xQ8X13Omxt0P7u-bS7ukS15BtT61hPpHVdUCFliWeY44dZyTpi3mFVUWcsMl7K2ZqG8ZGxRc0qdwsaQmk7Byei7TvF94_Kgl3GT-nJSl-cp50wpWqhqpGyKOSfn9TqFlUlbTbD-LFGPJepSov4qUYsioqMoF7h_denX-h_VB92VdOs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893554993</pqid></control><display><type>article</type><title>Some Polynomial Conditions for Cyclic Quadrilaterals, Tilted Kites and Other Quadrilaterals</title><source>SpringerLink Journals</source><creator>Santoprete, Manuele</creator><creatorcontrib>Santoprete, Manuele</creatorcontrib><description>In this paper, we investigate some polynomial conditions that arise from Euclidean geometry. First we study polynomials related to quadrilaterals with supplementary angles, this includes convex cyclic quadrilaterals, as well as certain concave quadrilaterals. Then we consider polynomials associated with quadrilaterals with some equal angles, which include convex and concave tilted kites. Some of the results are proved using Groebner bases computations.</description><identifier>ISSN: 1661-8270</identifier><identifier>EISSN: 1661-8289</identifier><identifier>DOI: 10.1007/s11786-023-00574-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Angles (geometry) ; Computer Science ; Euclidean geometry ; Kites ; Mathematics ; Mathematics and Statistics ; Polynomials ; Quadrilaterals</subject><ispartof>Mathematics in computer science, 2023-12, Vol.17 (3-4), Article 24</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-dfdf18fe593778214c4e515cc5514fc04239cc4a5886cab9f844b6533e90aa163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11786-023-00574-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11786-023-00574-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Santoprete, Manuele</creatorcontrib><title>Some Polynomial Conditions for Cyclic Quadrilaterals, Tilted Kites and Other Quadrilaterals</title><title>Mathematics in computer science</title><addtitle>Math.Comput.Sci</addtitle><description>In this paper, we investigate some polynomial conditions that arise from Euclidean geometry. First we study polynomials related to quadrilaterals with supplementary angles, this includes convex cyclic quadrilaterals, as well as certain concave quadrilaterals. Then we consider polynomials associated with quadrilaterals with some equal angles, which include convex and concave tilted kites. Some of the results are proved using Groebner bases computations.</description><subject>Angles (geometry)</subject><subject>Computer Science</subject><subject>Euclidean geometry</subject><subject>Kites</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><subject>Quadrilaterals</subject><issn>1661-8270</issn><issn>1661-8289</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OAyEUhYnRxFp9AVckbkVhgAGWZuJfNKnGunJBKANKMx0qTBd9e9Exmrhwde_iO-eeewA4JviMYCzOMyFC1ghXFGHMBUNiB0xIXRMkK6l2f3aB98FBzkuM64owMgEvT3Hl4EPstn1cBdPBJvZtGELsM_QxwWZru2Dh48a0KXRmcMl0-RTOQze4Ft6FwWVo-hbOhjeX_mCHYM-X4Y6-5xQ8X13Omxt0P7u-bS7ukS15BtT61hPpHVdUCFliWeY44dZyTpi3mFVUWcsMl7K2ZqG8ZGxRc0qdwsaQmk7Byei7TvF94_Kgl3GT-nJSl-cp50wpWqhqpGyKOSfn9TqFlUlbTbD-LFGPJepSov4qUYsioqMoF7h_denX-h_VB92VdOs</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Santoprete, Manuele</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>Some Polynomial Conditions for Cyclic Quadrilaterals, Tilted Kites and Other Quadrilaterals</title><author>Santoprete, Manuele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-dfdf18fe593778214c4e515cc5514fc04239cc4a5886cab9f844b6533e90aa163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Angles (geometry)</topic><topic>Computer Science</topic><topic>Euclidean geometry</topic><topic>Kites</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><topic>Quadrilaterals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santoprete, Manuele</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematics in computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santoprete, Manuele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some Polynomial Conditions for Cyclic Quadrilaterals, Tilted Kites and Other Quadrilaterals</atitle><jtitle>Mathematics in computer science</jtitle><stitle>Math.Comput.Sci</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>17</volume><issue>3-4</issue><artnum>24</artnum><issn>1661-8270</issn><eissn>1661-8289</eissn><abstract>In this paper, we investigate some polynomial conditions that arise from Euclidean geometry. First we study polynomials related to quadrilaterals with supplementary angles, this includes convex cyclic quadrilaterals, as well as certain concave quadrilaterals. Then we consider polynomials associated with quadrilaterals with some equal angles, which include convex and concave tilted kites. Some of the results are proved using Groebner bases computations.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11786-023-00574-7</doi></addata></record>
fulltext fulltext
identifier ISSN: 1661-8270
ispartof Mathematics in computer science, 2023-12, Vol.17 (3-4), Article 24
issn 1661-8270
1661-8289
language eng
recordid cdi_proquest_journals_2893554993
source SpringerLink Journals
subjects Angles (geometry)
Computer Science
Euclidean geometry
Kites
Mathematics
Mathematics and Statistics
Polynomials
Quadrilaterals
title Some Polynomial Conditions for Cyclic Quadrilaterals, Tilted Kites and Other Quadrilaterals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A09%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Polynomial%20Conditions%20for%20Cyclic%20Quadrilaterals,%20Tilted%20Kites%20and%20Other%20Quadrilaterals&rft.jtitle=Mathematics%20in%20computer%20science&rft.au=Santoprete,%20Manuele&rft.date=2023-12-01&rft.volume=17&rft.issue=3-4&rft.artnum=24&rft.issn=1661-8270&rft.eissn=1661-8289&rft_id=info:doi/10.1007/s11786-023-00574-7&rft_dat=%3Cproquest_cross%3E2893554993%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2893554993&rft_id=info:pmid/&rfr_iscdi=true