Deterministic Chaotic Propagation Model
Coverage prediction is an essential method of planning broadcast and long-range wireless communication systems, minimizing the need for field measurements to adjust the coverage area and consequently reducing the time and cost of implementation. Coverage prediction methods use statistical simplifica...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Botelho, Alberto L. P. Akamine, Cristiano Lopes, Paulo B. |
description | Coverage prediction is an essential method of planning broadcast and long-range wireless communication systems, minimizing the need for field measurements to adjust the coverage area and consequently reducing the time and cost of implementation. Coverage prediction methods use statistical simplifications in conjunction to uncertainty quantification algorithms to assist in modeling multipath effects and impulsive noise, notably hard to be statistically considered. This paper presents a new approach to represent electromagnetic wave propagation uncertainties based on chaotic dynamical systems to model the behavior of multipath effect and impulsive noise. A novel Deterministic Chaotic Propagation Model (DCPM) is presented and used to predict coverage area in a DVB-T2 broadcast system in diverse transmission environments. The results indicate that the predicted area of bad reception is smaller in comparison to the one obtained using traditional methods. Therefore, fewer signal repeaters can be used to provide good TV reception in this area, causing a significant cost reduction in the set-up of a broadcast system. Another parameter used to evaluate the quality of reception is the carrier to noise power ratio (C/N) threshold for a bit error rate (BER) of 10-7. The DCPM indicate a C/N threshold equal to 13.7 dB in dense urban environment and 13.4 dB in rural environment using a moderately less robust modulation configuration. Employing a more robust configuration, the C/N threshold is equal to 0.9 dB in all environments. These numbers match the obtained by the traditional propagation models. |
doi_str_mv | 10.1109/ACCESS.2023.3333664 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2893072750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10319660</ieee_id><doaj_id>oai_doaj_org_article_ec786d4c2d0f45f6ba2414c7c62e119a</doaj_id><sourcerecordid>2893072750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-e5d652d957ba3f762a38a7285ca2b9c7a67a43986932ed18d5635e4baee664113</originalsourceid><addsrcrecordid>eNpNUE1LAzEUDKJgqf0Feih48LQ1H5tkcyxr1UJFoXoOb5O3dUvb1Oz24L83dUU6l_d4zMwbhpBrRieMUXM_LcvZcjnhlIuJSFAqPyMDzpTJhBTq_GS_JKO2XdOEIp2kHpC7B-wwbptd03aNG5efEI7zLYY9rKBrwm78EjxurshFDZsWR39zSD4eZ-_lc7Z4fZqX00XmhDRdhtIryX2yrkDUWnEQBWheSAe8Mk6D0pALUygjOHpWeKmExLwCxBSbMTEk897XB1jbfWy2EL9tgMb-HkJcWYgp4QYtOl0onzvuaZ3LWlXAc5Y77RRHxgwkr9veax_D1wHbzq7DIe5SfMsLI6jmWtLEEj3LxdC2Eev_r4zaY8G2L9geC7Z_BSfVTa9qEPFEIZhRioofIZp0ww</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893072750</pqid></control><display><type>article</type><title>Deterministic Chaotic Propagation Model</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Botelho, Alberto L. P. ; Akamine, Cristiano ; Lopes, Paulo B.</creator><creatorcontrib>Botelho, Alberto L. P. ; Akamine, Cristiano ; Lopes, Paulo B.</creatorcontrib><description>Coverage prediction is an essential method of planning broadcast and long-range wireless communication systems, minimizing the need for field measurements to adjust the coverage area and consequently reducing the time and cost of implementation. Coverage prediction methods use statistical simplifications in conjunction to uncertainty quantification algorithms to assist in modeling multipath effects and impulsive noise, notably hard to be statistically considered. This paper presents a new approach to represent electromagnetic wave propagation uncertainties based on chaotic dynamical systems to model the behavior of multipath effect and impulsive noise. A novel Deterministic Chaotic Propagation Model (DCPM) is presented and used to predict coverage area in a DVB-T2 broadcast system in diverse transmission environments. The results indicate that the predicted area of bad reception is smaller in comparison to the one obtained using traditional methods. Therefore, fewer signal repeaters can be used to provide good TV reception in this area, causing a significant cost reduction in the set-up of a broadcast system. Another parameter used to evaluate the quality of reception is the carrier to noise power ratio (C/N) threshold for a bit error rate (BER) of 10-7. The DCPM indicate a C/N threshold equal to 13.7 dB in dense urban environment and 13.4 dB in rural environment using a moderately less robust modulation configuration. Employing a more robust configuration, the C/N threshold is equal to 0.9 dB in all environments. These numbers match the obtained by the traditional propagation models.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3333664</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Bit error rate ; Broadcast ; Broadcasting ; Chaotic communication ; Chaotic Dynamical Systems ; Configurations ; Doppler effect ; Dynamical systems ; Electromagnetic radiation ; Electromagnetic scattering ; Impulsive Noise ; Long-range Wireless Communication ; Mathematical models ; Multipath ; Noise measurement ; Predictive models ; Propagation ; Receivers ; Robustness ; Rural environments ; Statistical methods ; Uncertainty ; Urban environments ; Wave propagation ; Wireless communication ; Wireless communication systems</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-e5d652d957ba3f762a38a7285ca2b9c7a67a43986932ed18d5635e4baee664113</cites><orcidid>0000-0003-1075-372X ; 0000-0002-8070-1688 ; 0000-0002-3161-4668</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10319660$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Botelho, Alberto L. P.</creatorcontrib><creatorcontrib>Akamine, Cristiano</creatorcontrib><creatorcontrib>Lopes, Paulo B.</creatorcontrib><title>Deterministic Chaotic Propagation Model</title><title>IEEE access</title><addtitle>Access</addtitle><description>Coverage prediction is an essential method of planning broadcast and long-range wireless communication systems, minimizing the need for field measurements to adjust the coverage area and consequently reducing the time and cost of implementation. Coverage prediction methods use statistical simplifications in conjunction to uncertainty quantification algorithms to assist in modeling multipath effects and impulsive noise, notably hard to be statistically considered. This paper presents a new approach to represent electromagnetic wave propagation uncertainties based on chaotic dynamical systems to model the behavior of multipath effect and impulsive noise. A novel Deterministic Chaotic Propagation Model (DCPM) is presented and used to predict coverage area in a DVB-T2 broadcast system in diverse transmission environments. The results indicate that the predicted area of bad reception is smaller in comparison to the one obtained using traditional methods. Therefore, fewer signal repeaters can be used to provide good TV reception in this area, causing a significant cost reduction in the set-up of a broadcast system. Another parameter used to evaluate the quality of reception is the carrier to noise power ratio (C/N) threshold for a bit error rate (BER) of 10-7. The DCPM indicate a C/N threshold equal to 13.7 dB in dense urban environment and 13.4 dB in rural environment using a moderately less robust modulation configuration. Employing a more robust configuration, the C/N threshold is equal to 0.9 dB in all environments. These numbers match the obtained by the traditional propagation models.</description><subject>Algorithms</subject><subject>Bit error rate</subject><subject>Broadcast</subject><subject>Broadcasting</subject><subject>Chaotic communication</subject><subject>Chaotic Dynamical Systems</subject><subject>Configurations</subject><subject>Doppler effect</subject><subject>Dynamical systems</subject><subject>Electromagnetic radiation</subject><subject>Electromagnetic scattering</subject><subject>Impulsive Noise</subject><subject>Long-range Wireless Communication</subject><subject>Mathematical models</subject><subject>Multipath</subject><subject>Noise measurement</subject><subject>Predictive models</subject><subject>Propagation</subject><subject>Receivers</subject><subject>Robustness</subject><subject>Rural environments</subject><subject>Statistical methods</subject><subject>Uncertainty</subject><subject>Urban environments</subject><subject>Wave propagation</subject><subject>Wireless communication</subject><subject>Wireless communication systems</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEUDKJgqf0Feih48LQ1H5tkcyxr1UJFoXoOb5O3dUvb1Oz24L83dUU6l_d4zMwbhpBrRieMUXM_LcvZcjnhlIuJSFAqPyMDzpTJhBTq_GS_JKO2XdOEIp2kHpC7B-wwbptd03aNG5efEI7zLYY9rKBrwm78EjxurshFDZsWR39zSD4eZ-_lc7Z4fZqX00XmhDRdhtIryX2yrkDUWnEQBWheSAe8Mk6D0pALUygjOHpWeKmExLwCxBSbMTEk897XB1jbfWy2EL9tgMb-HkJcWYgp4QYtOl0onzvuaZ3LWlXAc5Y77RRHxgwkr9veax_D1wHbzq7DIe5SfMsLI6jmWtLEEj3LxdC2Eev_r4zaY8G2L9geC7Z_BSfVTa9qEPFEIZhRioofIZp0ww</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Botelho, Alberto L. P.</creator><creator>Akamine, Cristiano</creator><creator>Lopes, Paulo B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1075-372X</orcidid><orcidid>https://orcid.org/0000-0002-8070-1688</orcidid><orcidid>https://orcid.org/0000-0002-3161-4668</orcidid></search><sort><creationdate>20230101</creationdate><title>Deterministic Chaotic Propagation Model</title><author>Botelho, Alberto L. P. ; Akamine, Cristiano ; Lopes, Paulo B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-e5d652d957ba3f762a38a7285ca2b9c7a67a43986932ed18d5635e4baee664113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Bit error rate</topic><topic>Broadcast</topic><topic>Broadcasting</topic><topic>Chaotic communication</topic><topic>Chaotic Dynamical Systems</topic><topic>Configurations</topic><topic>Doppler effect</topic><topic>Dynamical systems</topic><topic>Electromagnetic radiation</topic><topic>Electromagnetic scattering</topic><topic>Impulsive Noise</topic><topic>Long-range Wireless Communication</topic><topic>Mathematical models</topic><topic>Multipath</topic><topic>Noise measurement</topic><topic>Predictive models</topic><topic>Propagation</topic><topic>Receivers</topic><topic>Robustness</topic><topic>Rural environments</topic><topic>Statistical methods</topic><topic>Uncertainty</topic><topic>Urban environments</topic><topic>Wave propagation</topic><topic>Wireless communication</topic><topic>Wireless communication systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Botelho, Alberto L. P.</creatorcontrib><creatorcontrib>Akamine, Cristiano</creatorcontrib><creatorcontrib>Lopes, Paulo B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Botelho, Alberto L. P.</au><au>Akamine, Cristiano</au><au>Lopes, Paulo B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deterministic Chaotic Propagation Model</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Coverage prediction is an essential method of planning broadcast and long-range wireless communication systems, minimizing the need for field measurements to adjust the coverage area and consequently reducing the time and cost of implementation. Coverage prediction methods use statistical simplifications in conjunction to uncertainty quantification algorithms to assist in modeling multipath effects and impulsive noise, notably hard to be statistically considered. This paper presents a new approach to represent electromagnetic wave propagation uncertainties based on chaotic dynamical systems to model the behavior of multipath effect and impulsive noise. A novel Deterministic Chaotic Propagation Model (DCPM) is presented and used to predict coverage area in a DVB-T2 broadcast system in diverse transmission environments. The results indicate that the predicted area of bad reception is smaller in comparison to the one obtained using traditional methods. Therefore, fewer signal repeaters can be used to provide good TV reception in this area, causing a significant cost reduction in the set-up of a broadcast system. Another parameter used to evaluate the quality of reception is the carrier to noise power ratio (C/N) threshold for a bit error rate (BER) of 10-7. The DCPM indicate a C/N threshold equal to 13.7 dB in dense urban environment and 13.4 dB in rural environment using a moderately less robust modulation configuration. Employing a more robust configuration, the C/N threshold is equal to 0.9 dB in all environments. These numbers match the obtained by the traditional propagation models.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3333664</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1075-372X</orcidid><orcidid>https://orcid.org/0000-0002-8070-1688</orcidid><orcidid>https://orcid.org/0000-0002-3161-4668</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2893072750 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | Algorithms Bit error rate Broadcast Broadcasting Chaotic communication Chaotic Dynamical Systems Configurations Doppler effect Dynamical systems Electromagnetic radiation Electromagnetic scattering Impulsive Noise Long-range Wireless Communication Mathematical models Multipath Noise measurement Predictive models Propagation Receivers Robustness Rural environments Statistical methods Uncertainty Urban environments Wave propagation Wireless communication Wireless communication systems |
title | Deterministic Chaotic Propagation Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A05%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deterministic%20Chaotic%20Propagation%20Model&rft.jtitle=IEEE%20access&rft.au=Botelho,%20Alberto%20L.%20P.&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3333664&rft_dat=%3Cproquest_cross%3E2893072750%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2893072750&rft_id=info:pmid/&rft_ieee_id=10319660&rft_doaj_id=oai_doaj_org_article_ec786d4c2d0f45f6ba2414c7c62e119a&rfr_iscdi=true |