Hybrid Form of Differential Evolutionary and Gray Wolf Algorithm for Multi-AUV Task Allocation in Target Search
For underwater target exploration, multiple Autonomous Underwater Vehicles (AUVs) have shown significant advantages over single AUVs. Aiming at Multi-AUV task allocation, which is an important issue for collaborative work in underwater environments, this paper proposes a Multi-AUV task allocation me...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2023-11, Vol.12 (22), p.4575 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 22 |
container_start_page | 4575 |
container_title | Electronics (Basel) |
container_volume | 12 |
creator | Chen, Ziyun Zhang, Dengsheng Wang, Chengxiang Sha, Qixin |
description | For underwater target exploration, multiple Autonomous Underwater Vehicles (AUVs) have shown significant advantages over single AUVs. Aiming at Multi-AUV task allocation, which is an important issue for collaborative work in underwater environments, this paper proposes a Multi-AUV task allocation method based on the Differential Evolutionary Gray Wolf Optimization (DE-GWO) algorithm. Firstly, the working process of the Multi-AUV system was analyzed, and the allocation model and objective function were established. Then, we combined the advantages of the strong global search capability of the Differential Evolutionary (DE) algorithm and the excellent convergence performance of Gray Wolf Optimization (GWO) to solve the task assignment of the Multi-AUV system. Finally, a reassignment mechanism was used to solve the problem of AUV failures during the task’s execution. In the simulation comparison experiments, the DE-GWO, GWO, DE, and Particle Swarm Optimization (PSO) algorithms were carried out for different AUV execution capabilities, respectively. |
doi_str_mv | 10.3390/electronics12224575 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2893040809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A774319587</galeid><sourcerecordid>A774319587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-e3e01d3e53e07019c1377387e091f867d835b80da68948f970942bf8b5e1c9473</originalsourceid><addsrcrecordid>eNptUU1PwzAMrRBITGO_gEskzh1J0y7JsRr7QBriwAbHKk2dLSNrRpoi7d-TaRw4YB9sPfvZll-S3BM8plTgR7CggnetUR3JsiwvWHGVDDLMRCoykV3_yW-TUdftcTRBKKd4kLjlqfamQXPnD8hp9GS0Bg9tMNKi2bezfTCulf6EZNughZcn9OGsRqXdOm_C7oC08-ilt8Gk5eYdrWX3GYvWKXkmItNGyG8hoDeQXu3ukhstbQej3zhMNvPZerpMV6-L52m5ShUlJKRAAZOGQhEjw0QoQhmjnEE8XPMJazgtao4bOeEi51owLPKs1rwugCiRMzpMHi5zj9599dCFau9638aVVcYFxTnmWMSu8aVrKy1UptUueKmiN3AwyrWgTcRLxnJKRMHPY-mFoLzrOg-6OnpziO-pCK7OalT_qEF_AKH5fy4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893040809</pqid></control><display><type>article</type><title>Hybrid Form of Differential Evolutionary and Gray Wolf Algorithm for Multi-AUV Task Allocation in Target Search</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chen, Ziyun ; Zhang, Dengsheng ; Wang, Chengxiang ; Sha, Qixin</creator><creatorcontrib>Chen, Ziyun ; Zhang, Dengsheng ; Wang, Chengxiang ; Sha, Qixin</creatorcontrib><description>For underwater target exploration, multiple Autonomous Underwater Vehicles (AUVs) have shown significant advantages over single AUVs. Aiming at Multi-AUV task allocation, which is an important issue for collaborative work in underwater environments, this paper proposes a Multi-AUV task allocation method based on the Differential Evolutionary Gray Wolf Optimization (DE-GWO) algorithm. Firstly, the working process of the Multi-AUV system was analyzed, and the allocation model and objective function were established. Then, we combined the advantages of the strong global search capability of the Differential Evolutionary (DE) algorithm and the excellent convergence performance of Gray Wolf Optimization (GWO) to solve the task assignment of the Multi-AUV system. Finally, a reassignment mechanism was used to solve the problem of AUV failures during the task’s execution. In the simulation comparison experiments, the DE-GWO, GWO, DE, and Particle Swarm Optimization (PSO) algorithms were carried out for different AUV execution capabilities, respectively.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12224575</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Auctions ; Autonomous underwater vehicles ; Collaborative work ; Energy consumption ; Evolutionary algorithms ; Intelligence ; Mathematical optimization ; Methods ; Optimization algorithms ; Particle swarm optimization ; Remote submersibles ; Resource allocation ; Robots</subject><ispartof>Electronics (Basel), 2023-11, Vol.12 (22), p.4575</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-e3e01d3e53e07019c1377387e091f867d835b80da68948f970942bf8b5e1c9473</cites><orcidid>0009-0000-6600-4969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chen, Ziyun</creatorcontrib><creatorcontrib>Zhang, Dengsheng</creatorcontrib><creatorcontrib>Wang, Chengxiang</creatorcontrib><creatorcontrib>Sha, Qixin</creatorcontrib><title>Hybrid Form of Differential Evolutionary and Gray Wolf Algorithm for Multi-AUV Task Allocation in Target Search</title><title>Electronics (Basel)</title><description>For underwater target exploration, multiple Autonomous Underwater Vehicles (AUVs) have shown significant advantages over single AUVs. Aiming at Multi-AUV task allocation, which is an important issue for collaborative work in underwater environments, this paper proposes a Multi-AUV task allocation method based on the Differential Evolutionary Gray Wolf Optimization (DE-GWO) algorithm. Firstly, the working process of the Multi-AUV system was analyzed, and the allocation model and objective function were established. Then, we combined the advantages of the strong global search capability of the Differential Evolutionary (DE) algorithm and the excellent convergence performance of Gray Wolf Optimization (GWO) to solve the task assignment of the Multi-AUV system. Finally, a reassignment mechanism was used to solve the problem of AUV failures during the task’s execution. In the simulation comparison experiments, the DE-GWO, GWO, DE, and Particle Swarm Optimization (PSO) algorithms were carried out for different AUV execution capabilities, respectively.</description><subject>Algorithms</subject><subject>Auctions</subject><subject>Autonomous underwater vehicles</subject><subject>Collaborative work</subject><subject>Energy consumption</subject><subject>Evolutionary algorithms</subject><subject>Intelligence</subject><subject>Mathematical optimization</subject><subject>Methods</subject><subject>Optimization algorithms</subject><subject>Particle swarm optimization</subject><subject>Remote submersibles</subject><subject>Resource allocation</subject><subject>Robots</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptUU1PwzAMrRBITGO_gEskzh1J0y7JsRr7QBriwAbHKk2dLSNrRpoi7d-TaRw4YB9sPfvZll-S3BM8plTgR7CggnetUR3JsiwvWHGVDDLMRCoykV3_yW-TUdftcTRBKKd4kLjlqfamQXPnD8hp9GS0Bg9tMNKi2bezfTCulf6EZNughZcn9OGsRqXdOm_C7oC08-ilt8Gk5eYdrWX3GYvWKXkmItNGyG8hoDeQXu3ukhstbQej3zhMNvPZerpMV6-L52m5ShUlJKRAAZOGQhEjw0QoQhmjnEE8XPMJazgtao4bOeEi51owLPKs1rwugCiRMzpMHi5zj9599dCFau9638aVVcYFxTnmWMSu8aVrKy1UptUueKmiN3AwyrWgTcRLxnJKRMHPY-mFoLzrOg-6OnpziO-pCK7OalT_qEF_AKH5fy4</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Chen, Ziyun</creator><creator>Zhang, Dengsheng</creator><creator>Wang, Chengxiang</creator><creator>Sha, Qixin</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0009-0000-6600-4969</orcidid></search><sort><creationdate>20231101</creationdate><title>Hybrid Form of Differential Evolutionary and Gray Wolf Algorithm for Multi-AUV Task Allocation in Target Search</title><author>Chen, Ziyun ; Zhang, Dengsheng ; Wang, Chengxiang ; Sha, Qixin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-e3e01d3e53e07019c1377387e091f867d835b80da68948f970942bf8b5e1c9473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Auctions</topic><topic>Autonomous underwater vehicles</topic><topic>Collaborative work</topic><topic>Energy consumption</topic><topic>Evolutionary algorithms</topic><topic>Intelligence</topic><topic>Mathematical optimization</topic><topic>Methods</topic><topic>Optimization algorithms</topic><topic>Particle swarm optimization</topic><topic>Remote submersibles</topic><topic>Resource allocation</topic><topic>Robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ziyun</creatorcontrib><creatorcontrib>Zhang, Dengsheng</creatorcontrib><creatorcontrib>Wang, Chengxiang</creatorcontrib><creatorcontrib>Sha, Qixin</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ziyun</au><au>Zhang, Dengsheng</au><au>Wang, Chengxiang</au><au>Sha, Qixin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Form of Differential Evolutionary and Gray Wolf Algorithm for Multi-AUV Task Allocation in Target Search</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>12</volume><issue>22</issue><spage>4575</spage><pages>4575-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>For underwater target exploration, multiple Autonomous Underwater Vehicles (AUVs) have shown significant advantages over single AUVs. Aiming at Multi-AUV task allocation, which is an important issue for collaborative work in underwater environments, this paper proposes a Multi-AUV task allocation method based on the Differential Evolutionary Gray Wolf Optimization (DE-GWO) algorithm. Firstly, the working process of the Multi-AUV system was analyzed, and the allocation model and objective function were established. Then, we combined the advantages of the strong global search capability of the Differential Evolutionary (DE) algorithm and the excellent convergence performance of Gray Wolf Optimization (GWO) to solve the task assignment of the Multi-AUV system. Finally, a reassignment mechanism was used to solve the problem of AUV failures during the task’s execution. In the simulation comparison experiments, the DE-GWO, GWO, DE, and Particle Swarm Optimization (PSO) algorithms were carried out for different AUV execution capabilities, respectively.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12224575</doi><orcidid>https://orcid.org/0009-0000-6600-4969</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2023-11, Vol.12 (22), p.4575 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2893040809 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Auctions Autonomous underwater vehicles Collaborative work Energy consumption Evolutionary algorithms Intelligence Mathematical optimization Methods Optimization algorithms Particle swarm optimization Remote submersibles Resource allocation Robots |
title | Hybrid Form of Differential Evolutionary and Gray Wolf Algorithm for Multi-AUV Task Allocation in Target Search |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A10%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Form%20of%20Differential%20Evolutionary%20and%20Gray%20Wolf%20Algorithm%20for%20Multi-AUV%20Task%20Allocation%20in%20Target%20Search&rft.jtitle=Electronics%20(Basel)&rft.au=Chen,%20Ziyun&rft.date=2023-11-01&rft.volume=12&rft.issue=22&rft.spage=4575&rft.pages=4575-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12224575&rft_dat=%3Cgale_proqu%3EA774319587%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2893040809&rft_id=info:pmid/&rft_galeid=A774319587&rfr_iscdi=true |