Deep Learning-Based Small Target Detection for Satellite–Ground Free Space Optical Communications

Free space optical (FSO) channels between a low earth orbit (LEO) satellite and a ground station (GS) use a highly directional optical beam that necessitates a continuous line-of-sight (LOS) connection. In this paper, we propose a deep neural network (DNN)-based small target detection method that de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2023-11, Vol.12 (22), p.4701
Hauptverfasser: Devkota, Nikesh, Kim, Byung Wook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page 4701
container_title Electronics (Basel)
container_volume 12
creator Devkota, Nikesh
Kim, Byung Wook
description Free space optical (FSO) channels between a low earth orbit (LEO) satellite and a ground station (GS) use a highly directional optical beam that necessitates a continuous line-of-sight (LOS) connection. In this paper, we propose a deep neural network (DNN)-based small target detection method that detects the position of a LEO satellite in an infrared image, which can be used to determine the receiver alignment for establishing the LOS link. For the infrared small target detection task without excessive down-sampling, we design a target detection model using a modified ResNest-based feature extraction network (FEN), a custom feature pyramid network (FPN), and a target determination network (TDN). ResNest utilizes the feature map attention mechanism and multi-path propagation necessary for robust feature extraction of small infrared targets. The custom FPN combines multi-scale feature maps generated from the modified ResNest to obtain robust semantics across all scales. Finally, the semantically strong multi-scale feature maps are fed into the TDN to detect small infrared targets and determine their location in infrared images. Experimental results using two widely used point spread functions (PSFs) demonstrate that the proposed algorithm outperforms the conventional schemes and detects small targets with a true detection rate of 99.4% and 94.0%.
doi_str_mv 10.3390/electronics12224701
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2893039617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2893039617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-a4325ce1dd13c0126b1465f117320d01cfefb3a3d779430881b4d9d3367733973</originalsourceid><addsrcrecordid>eNptkLFOwzAQhi0EElXpE7BYYg7YvjSOR2hpQYrUoWWOXPtSpUriYDsDG-_AG_IkpCoDA7f8N_z3_6ePkFvO7gEUe8AGTfSuq03gQohUMn5BJoJJlSihxOWf_ZrMQjiycRSHHNiEmCViTwvUvqu7Q_KkA1q6bXXT0J32B4x0iXHMr11HK-fpVkdsmjri9-fX2ruhs3TlEem21wbppo-10Q1duLYdxof06S7ckKtKNwFnvzolb6vn3eIlKTbr18VjkRgQIiY6BTE3yK3lYBgX2Z6n2bziXIJglnFTYbUHDVZKlQLLc75PrbIAmZQjCAlTcnfO7b17HzDE8ugG342VpcgVMFAZP7ng7DLeheCxKntft9p_lJyVJ6DlP0DhBxWBbFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893039617</pqid></control><display><type>article</type><title>Deep Learning-Based Small Target Detection for Satellite–Ground Free Space Optical Communications</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Devkota, Nikesh ; Kim, Byung Wook</creator><creatorcontrib>Devkota, Nikesh ; Kim, Byung Wook</creatorcontrib><description>Free space optical (FSO) channels between a low earth orbit (LEO) satellite and a ground station (GS) use a highly directional optical beam that necessitates a continuous line-of-sight (LOS) connection. In this paper, we propose a deep neural network (DNN)-based small target detection method that detects the position of a LEO satellite in an infrared image, which can be used to determine the receiver alignment for establishing the LOS link. For the infrared small target detection task without excessive down-sampling, we design a target detection model using a modified ResNest-based feature extraction network (FEN), a custom feature pyramid network (FPN), and a target determination network (TDN). ResNest utilizes the feature map attention mechanism and multi-path propagation necessary for robust feature extraction of small infrared targets. The custom FPN combines multi-scale feature maps generated from the modified ResNest to obtain robust semantics across all scales. Finally, the semantically strong multi-scale feature maps are fed into the TDN to detect small infrared targets and determine their location in infrared images. Experimental results using two widely used point spread functions (PSFs) demonstrate that the proposed algorithm outperforms the conventional schemes and detects small targets with a true detection rate of 99.4% and 94.0%.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12224701</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Ablation ; Algorithms ; Artificial neural networks ; Cameras ; Communication ; Feature extraction ; Feature maps ; Free space optics ; Free-space optical communication ; Ground stations ; Infrared imagery ; Lasers ; Line of sight ; Low earth orbit satellites ; Low earth orbits ; Machine learning ; Point spread functions ; Robustness ; Satellite imagery ; Semantics ; Target detection</subject><ispartof>Electronics (Basel), 2023-11, Vol.12 (22), p.4701</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-a4325ce1dd13c0126b1465f117320d01cfefb3a3d779430881b4d9d3367733973</citedby><cites>FETCH-LOGICAL-c322t-a4325ce1dd13c0126b1465f117320d01cfefb3a3d779430881b4d9d3367733973</cites><orcidid>0000-0002-0080-6333 ; 0000-0002-4728-9011</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Devkota, Nikesh</creatorcontrib><creatorcontrib>Kim, Byung Wook</creatorcontrib><title>Deep Learning-Based Small Target Detection for Satellite–Ground Free Space Optical Communications</title><title>Electronics (Basel)</title><description>Free space optical (FSO) channels between a low earth orbit (LEO) satellite and a ground station (GS) use a highly directional optical beam that necessitates a continuous line-of-sight (LOS) connection. In this paper, we propose a deep neural network (DNN)-based small target detection method that detects the position of a LEO satellite in an infrared image, which can be used to determine the receiver alignment for establishing the LOS link. For the infrared small target detection task without excessive down-sampling, we design a target detection model using a modified ResNest-based feature extraction network (FEN), a custom feature pyramid network (FPN), and a target determination network (TDN). ResNest utilizes the feature map attention mechanism and multi-path propagation necessary for robust feature extraction of small infrared targets. The custom FPN combines multi-scale feature maps generated from the modified ResNest to obtain robust semantics across all scales. Finally, the semantically strong multi-scale feature maps are fed into the TDN to detect small infrared targets and determine their location in infrared images. Experimental results using two widely used point spread functions (PSFs) demonstrate that the proposed algorithm outperforms the conventional schemes and detects small targets with a true detection rate of 99.4% and 94.0%.</description><subject>Ablation</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Cameras</subject><subject>Communication</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Free space optics</subject><subject>Free-space optical communication</subject><subject>Ground stations</subject><subject>Infrared imagery</subject><subject>Lasers</subject><subject>Line of sight</subject><subject>Low earth orbit satellites</subject><subject>Low earth orbits</subject><subject>Machine learning</subject><subject>Point spread functions</subject><subject>Robustness</subject><subject>Satellite imagery</subject><subject>Semantics</subject><subject>Target detection</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkLFOwzAQhi0EElXpE7BYYg7YvjSOR2hpQYrUoWWOXPtSpUriYDsDG-_AG_IkpCoDA7f8N_z3_6ePkFvO7gEUe8AGTfSuq03gQohUMn5BJoJJlSihxOWf_ZrMQjiycRSHHNiEmCViTwvUvqu7Q_KkA1q6bXXT0J32B4x0iXHMr11HK-fpVkdsmjri9-fX2ruhs3TlEem21wbppo-10Q1duLYdxof06S7ckKtKNwFnvzolb6vn3eIlKTbr18VjkRgQIiY6BTE3yK3lYBgX2Z6n2bziXIJglnFTYbUHDVZKlQLLc75PrbIAmZQjCAlTcnfO7b17HzDE8ugG342VpcgVMFAZP7ng7DLeheCxKntft9p_lJyVJ6DlP0DhBxWBbFw</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Devkota, Nikesh</creator><creator>Kim, Byung Wook</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-0080-6333</orcidid><orcidid>https://orcid.org/0000-0002-4728-9011</orcidid></search><sort><creationdate>20231101</creationdate><title>Deep Learning-Based Small Target Detection for Satellite–Ground Free Space Optical Communications</title><author>Devkota, Nikesh ; Kim, Byung Wook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-a4325ce1dd13c0126b1465f117320d01cfefb3a3d779430881b4d9d3367733973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ablation</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Cameras</topic><topic>Communication</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Free space optics</topic><topic>Free-space optical communication</topic><topic>Ground stations</topic><topic>Infrared imagery</topic><topic>Lasers</topic><topic>Line of sight</topic><topic>Low earth orbit satellites</topic><topic>Low earth orbits</topic><topic>Machine learning</topic><topic>Point spread functions</topic><topic>Robustness</topic><topic>Satellite imagery</topic><topic>Semantics</topic><topic>Target detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devkota, Nikesh</creatorcontrib><creatorcontrib>Kim, Byung Wook</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devkota, Nikesh</au><au>Kim, Byung Wook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning-Based Small Target Detection for Satellite–Ground Free Space Optical Communications</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>12</volume><issue>22</issue><spage>4701</spage><pages>4701-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Free space optical (FSO) channels between a low earth orbit (LEO) satellite and a ground station (GS) use a highly directional optical beam that necessitates a continuous line-of-sight (LOS) connection. In this paper, we propose a deep neural network (DNN)-based small target detection method that detects the position of a LEO satellite in an infrared image, which can be used to determine the receiver alignment for establishing the LOS link. For the infrared small target detection task without excessive down-sampling, we design a target detection model using a modified ResNest-based feature extraction network (FEN), a custom feature pyramid network (FPN), and a target determination network (TDN). ResNest utilizes the feature map attention mechanism and multi-path propagation necessary for robust feature extraction of small infrared targets. The custom FPN combines multi-scale feature maps generated from the modified ResNest to obtain robust semantics across all scales. Finally, the semantically strong multi-scale feature maps are fed into the TDN to detect small infrared targets and determine their location in infrared images. Experimental results using two widely used point spread functions (PSFs) demonstrate that the proposed algorithm outperforms the conventional schemes and detects small targets with a true detection rate of 99.4% and 94.0%.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12224701</doi><orcidid>https://orcid.org/0000-0002-0080-6333</orcidid><orcidid>https://orcid.org/0000-0002-4728-9011</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2023-11, Vol.12 (22), p.4701
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2893039617
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Ablation
Algorithms
Artificial neural networks
Cameras
Communication
Feature extraction
Feature maps
Free space optics
Free-space optical communication
Ground stations
Infrared imagery
Lasers
Line of sight
Low earth orbit satellites
Low earth orbits
Machine learning
Point spread functions
Robustness
Satellite imagery
Semantics
Target detection
title Deep Learning-Based Small Target Detection for Satellite–Ground Free Space Optical Communications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T00%3A44%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning-Based%20Small%20Target%20Detection%20for%20Satellite%E2%80%93Ground%20Free%20Space%20Optical%20Communications&rft.jtitle=Electronics%20(Basel)&rft.au=Devkota,%20Nikesh&rft.date=2023-11-01&rft.volume=12&rft.issue=22&rft.spage=4701&rft.pages=4701-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12224701&rft_dat=%3Cproquest_cross%3E2893039617%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2893039617&rft_id=info:pmid/&rfr_iscdi=true