Sustainably Sourced Mesoporous Carbon Molecular Sieves as Immobilization Matrices for Enzymatic Biofuel Cell Applications
Ordered mesoporous carbon CMK-3 sieves with a hexagonal structure and uniform pore size have recently emerged as promising materials for applications as adsorbents and electrodes. In this study, using sucrose as the sustainable carbon source and SBA-15 as a template, CMK-3 sieves are synthesized to...
Gespeichert in:
Veröffentlicht in: | Catalysts 2023-11, Vol.13 (11), p.1415 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 1415 |
container_title | Catalysts |
container_volume | 13 |
creator | Torrigino, Federica Nagel, Marcel Peng, Zhujun Hartmann, Martin Herkendell, Katharina |
description | Ordered mesoporous carbon CMK-3 sieves with a hexagonal structure and uniform pore size have recently emerged as promising materials for applications as adsorbents and electrodes. In this study, using sucrose as the sustainable carbon source and SBA-15 as a template, CMK-3 sieves are synthesized to form bioelectrocatalytic immobilization matrices for enzymatic biofuel cell (EFC) electrodes. Their electrochemical performance, capacitive features, and the stability of enzyme immobilization are analyzed and compared to commercially available multi-walled carbon nanotubes (MWCNT) using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The anodic reaction in the presence of glucose oxidase (GOx) and ferrocene methanol (FcMeOH) on the sustainably sourced CMK-3-based electrodes produces bioelectrocatalytic current responses at 0.5 V vs. saturated calomel electrode (SCE) that are twice as high as on the MWCNT-based electrodes under saturated glucose conditions. For the cathodic reaction, the MWCNT-based cathode performs marginally better than the CMK-3-based electrodes in the presence of bilirubin oxidase (BOD) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS2−). The CMK-3-based EFCs assembled from the GOx anode and BOD cathode results in a power output of 93 μW cm−2. In contrast, the output power of MWCNT-based EFCs is approximately 53 μW cm−2. The efficiency of CMK-3 as a support material for biofuel cell applications is effectively demonstrated. |
doi_str_mv | 10.3390/catal13111415 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2893030284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A774318398</galeid><sourcerecordid>A774318398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-35590f72e6b58bb7d8e436a00b3ec48733840fd4c69fd6a669db9646535ccda63</originalsourceid><addsrcrecordid>eNptkVFLwzAQx4soOOYefQ_43Jn00jR9nGPqYMOH6XNJ00Qy0qYmrdB9ejsn6MC7hzvufv87jouiW4LnADm-l6ITlgAhhJL0IpokOIOYAqWXf_LraBbCHo-WE-AknUTDrg-dMI0o7YB2rvdSVWirgmudd31AS-FL16Cts0r2Vni0M-pTBSQCWte1K401B9GZIyI6b-TY0s6jVXMY6rEu0YNxulcWLZW1aNG21shvPtxEV1rYoGY_cRq9Pa5el8_x5uVpvVxsYglJ1sWQpjnWWaJYmfKyzCquKDCBcQlKUp4BcIp1RSXLdcUEY3lV5oyyFFIpK8FgGt2d5rbeffQqdMV-PLMZVxYJzwEDTjj9pd6FVYVptOu8kLUJslhkGQXCIecjNf-HGr1StZGuUdqM9TNBfBJI70LwShetN7XwQ0FwcfxbcfY3-AJD9ous</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893030284</pqid></control><display><type>article</type><title>Sustainably Sourced Mesoporous Carbon Molecular Sieves as Immobilization Matrices for Enzymatic Biofuel Cell Applications</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Torrigino, Federica ; Nagel, Marcel ; Peng, Zhujun ; Hartmann, Martin ; Herkendell, Katharina</creator><creatorcontrib>Torrigino, Federica ; Nagel, Marcel ; Peng, Zhujun ; Hartmann, Martin ; Herkendell, Katharina</creatorcontrib><description>Ordered mesoporous carbon CMK-3 sieves with a hexagonal structure and uniform pore size have recently emerged as promising materials for applications as adsorbents and electrodes. In this study, using sucrose as the sustainable carbon source and SBA-15 as a template, CMK-3 sieves are synthesized to form bioelectrocatalytic immobilization matrices for enzymatic biofuel cell (EFC) electrodes. Their electrochemical performance, capacitive features, and the stability of enzyme immobilization are analyzed and compared to commercially available multi-walled carbon nanotubes (MWCNT) using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The anodic reaction in the presence of glucose oxidase (GOx) and ferrocene methanol (FcMeOH) on the sustainably sourced CMK-3-based electrodes produces bioelectrocatalytic current responses at 0.5 V vs. saturated calomel electrode (SCE) that are twice as high as on the MWCNT-based electrodes under saturated glucose conditions. For the cathodic reaction, the MWCNT-based cathode performs marginally better than the CMK-3-based electrodes in the presence of bilirubin oxidase (BOD) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS2−). The CMK-3-based EFCs assembled from the GOx anode and BOD cathode results in a power output of 93 μW cm−2. In contrast, the output power of MWCNT-based EFCs is approximately 53 μW cm−2. The efficiency of CMK-3 as a support material for biofuel cell applications is effectively demonstrated.</description><identifier>ISSN: 2073-4344</identifier><identifier>EISSN: 2073-4344</identifier><identifier>DOI: 10.3390/catal13111415</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adsorption ; Analysis ; Biochemical fuel cells ; Biodiesel fuels ; Biofuels ; Biomass ; Biomass energy ; Calomel electrode ; Carbon ; Catalysis ; Cathodes ; Chemical synthesis ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrodes ; Electrons ; Enzymes ; Fuel cells ; Glucose ; Glucose oxidase ; Identification and classification ; Immobilization ; Methods ; Molecular sieves ; Multi wall carbon nanotubes ; Nanomaterials ; Nanoparticles ; Oxidation ; Pore size ; Porous materials ; Properties ; Stability analysis ; Sulfonic acid</subject><ispartof>Catalysts, 2023-11, Vol.13 (11), p.1415</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c327t-35590f72e6b58bb7d8e436a00b3ec48733840fd4c69fd6a669db9646535ccda63</cites><orcidid>0000-0003-1156-6264 ; 0000-0002-8462-9572</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27913,27914</link.rule.ids></links><search><creatorcontrib>Torrigino, Federica</creatorcontrib><creatorcontrib>Nagel, Marcel</creatorcontrib><creatorcontrib>Peng, Zhujun</creatorcontrib><creatorcontrib>Hartmann, Martin</creatorcontrib><creatorcontrib>Herkendell, Katharina</creatorcontrib><title>Sustainably Sourced Mesoporous Carbon Molecular Sieves as Immobilization Matrices for Enzymatic Biofuel Cell Applications</title><title>Catalysts</title><description>Ordered mesoporous carbon CMK-3 sieves with a hexagonal structure and uniform pore size have recently emerged as promising materials for applications as adsorbents and electrodes. In this study, using sucrose as the sustainable carbon source and SBA-15 as a template, CMK-3 sieves are synthesized to form bioelectrocatalytic immobilization matrices for enzymatic biofuel cell (EFC) electrodes. Their electrochemical performance, capacitive features, and the stability of enzyme immobilization are analyzed and compared to commercially available multi-walled carbon nanotubes (MWCNT) using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The anodic reaction in the presence of glucose oxidase (GOx) and ferrocene methanol (FcMeOH) on the sustainably sourced CMK-3-based electrodes produces bioelectrocatalytic current responses at 0.5 V vs. saturated calomel electrode (SCE) that are twice as high as on the MWCNT-based electrodes under saturated glucose conditions. For the cathodic reaction, the MWCNT-based cathode performs marginally better than the CMK-3-based electrodes in the presence of bilirubin oxidase (BOD) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS2−). The CMK-3-based EFCs assembled from the GOx anode and BOD cathode results in a power output of 93 μW cm−2. In contrast, the output power of MWCNT-based EFCs is approximately 53 μW cm−2. The efficiency of CMK-3 as a support material for biofuel cell applications is effectively demonstrated.</description><subject>Adsorption</subject><subject>Analysis</subject><subject>Biochemical fuel cells</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>Biomass energy</subject><subject>Calomel electrode</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>Cathodes</subject><subject>Chemical synthesis</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrodes</subject><subject>Electrons</subject><subject>Enzymes</subject><subject>Fuel cells</subject><subject>Glucose</subject><subject>Glucose oxidase</subject><subject>Identification and classification</subject><subject>Immobilization</subject><subject>Methods</subject><subject>Molecular sieves</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Pore size</subject><subject>Porous materials</subject><subject>Properties</subject><subject>Stability analysis</subject><subject>Sulfonic acid</subject><issn>2073-4344</issn><issn>2073-4344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkVFLwzAQx4soOOYefQ_43Jn00jR9nGPqYMOH6XNJ00Qy0qYmrdB9ejsn6MC7hzvufv87jouiW4LnADm-l6ITlgAhhJL0IpokOIOYAqWXf_LraBbCHo-WE-AknUTDrg-dMI0o7YB2rvdSVWirgmudd31AS-FL16Cts0r2Vni0M-pTBSQCWte1K401B9GZIyI6b-TY0s6jVXMY6rEu0YNxulcWLZW1aNG21shvPtxEV1rYoGY_cRq9Pa5el8_x5uVpvVxsYglJ1sWQpjnWWaJYmfKyzCquKDCBcQlKUp4BcIp1RSXLdcUEY3lV5oyyFFIpK8FgGt2d5rbeffQqdMV-PLMZVxYJzwEDTjj9pd6FVYVptOu8kLUJslhkGQXCIecjNf-HGr1StZGuUdqM9TNBfBJI70LwShetN7XwQ0FwcfxbcfY3-AJD9ous</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Torrigino, Federica</creator><creator>Nagel, Marcel</creator><creator>Peng, Zhujun</creator><creator>Hartmann, Martin</creator><creator>Herkendell, Katharina</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-1156-6264</orcidid><orcidid>https://orcid.org/0000-0002-8462-9572</orcidid></search><sort><creationdate>20231101</creationdate><title>Sustainably Sourced Mesoporous Carbon Molecular Sieves as Immobilization Matrices for Enzymatic Biofuel Cell Applications</title><author>Torrigino, Federica ; Nagel, Marcel ; Peng, Zhujun ; Hartmann, Martin ; Herkendell, Katharina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-35590f72e6b58bb7d8e436a00b3ec48733840fd4c69fd6a669db9646535ccda63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Analysis</topic><topic>Biochemical fuel cells</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>Biomass energy</topic><topic>Calomel electrode</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>Cathodes</topic><topic>Chemical synthesis</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrodes</topic><topic>Electrons</topic><topic>Enzymes</topic><topic>Fuel cells</topic><topic>Glucose</topic><topic>Glucose oxidase</topic><topic>Identification and classification</topic><topic>Immobilization</topic><topic>Methods</topic><topic>Molecular sieves</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Pore size</topic><topic>Porous materials</topic><topic>Properties</topic><topic>Stability analysis</topic><topic>Sulfonic acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torrigino, Federica</creatorcontrib><creatorcontrib>Nagel, Marcel</creatorcontrib><creatorcontrib>Peng, Zhujun</creatorcontrib><creatorcontrib>Hartmann, Martin</creatorcontrib><creatorcontrib>Herkendell, Katharina</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Catalysts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torrigino, Federica</au><au>Nagel, Marcel</au><au>Peng, Zhujun</au><au>Hartmann, Martin</au><au>Herkendell, Katharina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sustainably Sourced Mesoporous Carbon Molecular Sieves as Immobilization Matrices for Enzymatic Biofuel Cell Applications</atitle><jtitle>Catalysts</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>13</volume><issue>11</issue><spage>1415</spage><pages>1415-</pages><issn>2073-4344</issn><eissn>2073-4344</eissn><abstract>Ordered mesoporous carbon CMK-3 sieves with a hexagonal structure and uniform pore size have recently emerged as promising materials for applications as adsorbents and electrodes. In this study, using sucrose as the sustainable carbon source and SBA-15 as a template, CMK-3 sieves are synthesized to form bioelectrocatalytic immobilization matrices for enzymatic biofuel cell (EFC) electrodes. Their electrochemical performance, capacitive features, and the stability of enzyme immobilization are analyzed and compared to commercially available multi-walled carbon nanotubes (MWCNT) using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The anodic reaction in the presence of glucose oxidase (GOx) and ferrocene methanol (FcMeOH) on the sustainably sourced CMK-3-based electrodes produces bioelectrocatalytic current responses at 0.5 V vs. saturated calomel electrode (SCE) that are twice as high as on the MWCNT-based electrodes under saturated glucose conditions. For the cathodic reaction, the MWCNT-based cathode performs marginally better than the CMK-3-based electrodes in the presence of bilirubin oxidase (BOD) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS2−). The CMK-3-based EFCs assembled from the GOx anode and BOD cathode results in a power output of 93 μW cm−2. In contrast, the output power of MWCNT-based EFCs is approximately 53 μW cm−2. The efficiency of CMK-3 as a support material for biofuel cell applications is effectively demonstrated.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/catal13111415</doi><orcidid>https://orcid.org/0000-0003-1156-6264</orcidid><orcidid>https://orcid.org/0000-0002-8462-9572</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4344 |
ispartof | Catalysts, 2023-11, Vol.13 (11), p.1415 |
issn | 2073-4344 2073-4344 |
language | eng |
recordid | cdi_proquest_journals_2893030284 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Adsorption Analysis Biochemical fuel cells Biodiesel fuels Biofuels Biomass Biomass energy Calomel electrode Carbon Catalysis Cathodes Chemical synthesis Electrochemical analysis Electrochemical impedance spectroscopy Electrodes Electrons Enzymes Fuel cells Glucose Glucose oxidase Identification and classification Immobilization Methods Molecular sieves Multi wall carbon nanotubes Nanomaterials Nanoparticles Oxidation Pore size Porous materials Properties Stability analysis Sulfonic acid |
title | Sustainably Sourced Mesoporous Carbon Molecular Sieves as Immobilization Matrices for Enzymatic Biofuel Cell Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A45%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sustainably%20Sourced%20Mesoporous%20Carbon%20Molecular%20Sieves%20as%20Immobilization%20Matrices%20for%20Enzymatic%20Biofuel%20Cell%20Applications&rft.jtitle=Catalysts&rft.au=Torrigino,%20Federica&rft.date=2023-11-01&rft.volume=13&rft.issue=11&rft.spage=1415&rft.pages=1415-&rft.issn=2073-4344&rft.eissn=2073-4344&rft_id=info:doi/10.3390/catal13111415&rft_dat=%3Cgale_proqu%3EA774318398%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2893030284&rft_id=info:pmid/&rft_galeid=A774318398&rfr_iscdi=true |