A Self‐Sustaining Hydrogels with Autonomous Supply of Nutrients and Bioactive Domains for 3D Cell Culture
Photo‐crosslinkable platelet lysate (PL)‐based hydrogels have been proven to support human‐derived cell cultures owing to their high content of bioactive molecules, such as cytokines and growth factors. As a unique self‐maintained and biocompatible 3D scaffold, the recently reported self‐feeding hyd...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2023-11, Vol.33 (48), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 48 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 33 |
creator | Zargarzadeh, Mehrzad Gomes, Maria C. Patrício, Sónia G. Custódio, Catarina A. Mano, João F. |
description | Photo‐crosslinkable platelet lysate (PL)‐based hydrogels have been proven to support human‐derived cell cultures owing to their high content of bioactive molecules, such as cytokines and growth factors. As a unique self‐maintained and biocompatible 3D scaffold, the recently reported self‐feeding hydrogels with enzyme‐empowered degradation capacity have shown high biological performance in vitro and in vivo. To take advantage of all features of both PL and self‐feeding hydrogels, here UV responsive laminaran‐methacrylate (LamMA) and PL‐methacrylate (PLMA) derivatives plus glucoamylase (GA), which significantly improve the overall features of a 3D system, is coupled. This self‐sustaining hybrid hydrogel emerges as a unique scaffold due to the sustained delivery of glucose produced via enzymatic degradation of laminaran while granting the release of growth factors through the presence of PL. This biomaterial is applied to fabricate high‐throughput freestanding microgels with controlled geometric shapes. Furthermore, this multicomponent hybrid hydrogel is successfully implemented as the first reported glucose supplier bioink to manufacture intricate and precisely defined cell‐laden structures using a support matrix. Finally, such hydrogels are utilized as a proof of concept to serve as 3D in vitro cancer models, with the aim of recapitulating the tumor microenvironment.
Self‐sustaining hydrogels emerge as a unique scaffold due to the sustained delivery of glucose produced via enzymatic degradation of laminaran while granting the release of growth factors through the presence of platelet lysate. This multifunctional hydrogel holds promise for the future development of 3D structures in a variety of biotechnological applications as an autonomous cell‐supporting system with high cell functionality. |
doi_str_mv | 10.1002/adfm.202214372 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2892574816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892574816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3832-519a395f030b17d5c119363278f0ab638ad7abb5bb1afc7386ecd6b0f16cbfe73</originalsourceid><addsrcrecordid>eNqFkLtOwzAYhSMEElBYmS0xp_jS2MkYUkqRCgwFiS1yErukOHHwhSobj8Az8iSkKioj03-G7zu_dILgAsExghBf8Uo2YwwxRhPC8EFwgiiiIYE4Ptxn9HIcnFq7hhAxRiYnwVsKlkLJ78-vpbeO123drsC8r4xeCWXBpnavIPVOt7rR3oKl7zrVAy3Bg3emFq2zgLcVuK41L139IcBUN0OLBVIbQKYgE0qBzCvnjTgLjiRXVpz_3lHwPLt5yubh4vH2LksXYUligsMIJZwkkYQEFohVUYlQQijBLJaQF5TEvGK8KKKiQFyWjMRUlBUtoES0LKRgZBRc7no7o9-9sC5fa2_a4WWO4wRHbBIjOlDjHVUaba0RMu9M3XDT5wjm20Hz7aD5ftBBSHbCplai_4fO0-ns_s_9ASqee6Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892574816</pqid></control><display><type>article</type><title>A Self‐Sustaining Hydrogels with Autonomous Supply of Nutrients and Bioactive Domains for 3D Cell Culture</title><source>Wiley Online Library All Journals</source><creator>Zargarzadeh, Mehrzad ; Gomes, Maria C. ; Patrício, Sónia G. ; Custódio, Catarina A. ; Mano, João F.</creator><creatorcontrib>Zargarzadeh, Mehrzad ; Gomes, Maria C. ; Patrício, Sónia G. ; Custódio, Catarina A. ; Mano, João F.</creatorcontrib><description>Photo‐crosslinkable platelet lysate (PL)‐based hydrogels have been proven to support human‐derived cell cultures owing to their high content of bioactive molecules, such as cytokines and growth factors. As a unique self‐maintained and biocompatible 3D scaffold, the recently reported self‐feeding hydrogels with enzyme‐empowered degradation capacity have shown high biological performance in vitro and in vivo. To take advantage of all features of both PL and self‐feeding hydrogels, here UV responsive laminaran‐methacrylate (LamMA) and PL‐methacrylate (PLMA) derivatives plus glucoamylase (GA), which significantly improve the overall features of a 3D system, is coupled. This self‐sustaining hybrid hydrogel emerges as a unique scaffold due to the sustained delivery of glucose produced via enzymatic degradation of laminaran while granting the release of growth factors through the presence of PL. This biomaterial is applied to fabricate high‐throughput freestanding microgels with controlled geometric shapes. Furthermore, this multicomponent hybrid hydrogel is successfully implemented as the first reported glucose supplier bioink to manufacture intricate and precisely defined cell‐laden structures using a support matrix. Finally, such hydrogels are utilized as a proof of concept to serve as 3D in vitro cancer models, with the aim of recapitulating the tumor microenvironment.
Self‐sustaining hydrogels emerge as a unique scaffold due to the sustained delivery of glucose produced via enzymatic degradation of laminaran while granting the release of growth factors through the presence of platelet lysate. This multifunctional hydrogel holds promise for the future development of 3D structures in a variety of biotechnological applications as an autonomous cell‐supporting system with high cell functionality.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202214372</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>3D cell culture ; Biocompatibility ; Biological activity ; Biomedical materials ; Degradation ; Glucose ; Growth factors ; Hydrogels ; laminaran ; Materials science ; Nutrients ; platelet‐lysate ; Scaffolds ; self‐sustaining</subject><ispartof>Advanced functional materials, 2023-11, Vol.33 (48), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3832-519a395f030b17d5c119363278f0ab638ad7abb5bb1afc7386ecd6b0f16cbfe73</citedby><cites>FETCH-LOGICAL-c3832-519a395f030b17d5c119363278f0ab638ad7abb5bb1afc7386ecd6b0f16cbfe73</cites><orcidid>0000-0002-4740-9538 ; 0000-0002-2342-3765</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202214372$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202214372$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Zargarzadeh, Mehrzad</creatorcontrib><creatorcontrib>Gomes, Maria C.</creatorcontrib><creatorcontrib>Patrício, Sónia G.</creatorcontrib><creatorcontrib>Custódio, Catarina A.</creatorcontrib><creatorcontrib>Mano, João F.</creatorcontrib><title>A Self‐Sustaining Hydrogels with Autonomous Supply of Nutrients and Bioactive Domains for 3D Cell Culture</title><title>Advanced functional materials</title><description>Photo‐crosslinkable platelet lysate (PL)‐based hydrogels have been proven to support human‐derived cell cultures owing to their high content of bioactive molecules, such as cytokines and growth factors. As a unique self‐maintained and biocompatible 3D scaffold, the recently reported self‐feeding hydrogels with enzyme‐empowered degradation capacity have shown high biological performance in vitro and in vivo. To take advantage of all features of both PL and self‐feeding hydrogels, here UV responsive laminaran‐methacrylate (LamMA) and PL‐methacrylate (PLMA) derivatives plus glucoamylase (GA), which significantly improve the overall features of a 3D system, is coupled. This self‐sustaining hybrid hydrogel emerges as a unique scaffold due to the sustained delivery of glucose produced via enzymatic degradation of laminaran while granting the release of growth factors through the presence of PL. This biomaterial is applied to fabricate high‐throughput freestanding microgels with controlled geometric shapes. Furthermore, this multicomponent hybrid hydrogel is successfully implemented as the first reported glucose supplier bioink to manufacture intricate and precisely defined cell‐laden structures using a support matrix. Finally, such hydrogels are utilized as a proof of concept to serve as 3D in vitro cancer models, with the aim of recapitulating the tumor microenvironment.
Self‐sustaining hydrogels emerge as a unique scaffold due to the sustained delivery of glucose produced via enzymatic degradation of laminaran while granting the release of growth factors through the presence of platelet lysate. This multifunctional hydrogel holds promise for the future development of 3D structures in a variety of biotechnological applications as an autonomous cell‐supporting system with high cell functionality.</description><subject>3D cell culture</subject><subject>Biocompatibility</subject><subject>Biological activity</subject><subject>Biomedical materials</subject><subject>Degradation</subject><subject>Glucose</subject><subject>Growth factors</subject><subject>Hydrogels</subject><subject>laminaran</subject><subject>Materials science</subject><subject>Nutrients</subject><subject>platelet‐lysate</subject><subject>Scaffolds</subject><subject>self‐sustaining</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAYhSMEElBYmS0xp_jS2MkYUkqRCgwFiS1yErukOHHwhSobj8Az8iSkKioj03-G7zu_dILgAsExghBf8Uo2YwwxRhPC8EFwgiiiIYE4Ptxn9HIcnFq7hhAxRiYnwVsKlkLJ78-vpbeO123drsC8r4xeCWXBpnavIPVOt7rR3oKl7zrVAy3Bg3emFq2zgLcVuK41L139IcBUN0OLBVIbQKYgE0qBzCvnjTgLjiRXVpz_3lHwPLt5yubh4vH2LksXYUligsMIJZwkkYQEFohVUYlQQijBLJaQF5TEvGK8KKKiQFyWjMRUlBUtoES0LKRgZBRc7no7o9-9sC5fa2_a4WWO4wRHbBIjOlDjHVUaba0RMu9M3XDT5wjm20Hz7aD5ftBBSHbCplai_4fO0-ns_s_9ASqee6Y</recordid><startdate>20231123</startdate><enddate>20231123</enddate><creator>Zargarzadeh, Mehrzad</creator><creator>Gomes, Maria C.</creator><creator>Patrício, Sónia G.</creator><creator>Custódio, Catarina A.</creator><creator>Mano, João F.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4740-9538</orcidid><orcidid>https://orcid.org/0000-0002-2342-3765</orcidid></search><sort><creationdate>20231123</creationdate><title>A Self‐Sustaining Hydrogels with Autonomous Supply of Nutrients and Bioactive Domains for 3D Cell Culture</title><author>Zargarzadeh, Mehrzad ; Gomes, Maria C. ; Patrício, Sónia G. ; Custódio, Catarina A. ; Mano, João F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3832-519a395f030b17d5c119363278f0ab638ad7abb5bb1afc7386ecd6b0f16cbfe73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D cell culture</topic><topic>Biocompatibility</topic><topic>Biological activity</topic><topic>Biomedical materials</topic><topic>Degradation</topic><topic>Glucose</topic><topic>Growth factors</topic><topic>Hydrogels</topic><topic>laminaran</topic><topic>Materials science</topic><topic>Nutrients</topic><topic>platelet‐lysate</topic><topic>Scaffolds</topic><topic>self‐sustaining</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zargarzadeh, Mehrzad</creatorcontrib><creatorcontrib>Gomes, Maria C.</creatorcontrib><creatorcontrib>Patrício, Sónia G.</creatorcontrib><creatorcontrib>Custódio, Catarina A.</creatorcontrib><creatorcontrib>Mano, João F.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zargarzadeh, Mehrzad</au><au>Gomes, Maria C.</au><au>Patrício, Sónia G.</au><au>Custódio, Catarina A.</au><au>Mano, João F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Self‐Sustaining Hydrogels with Autonomous Supply of Nutrients and Bioactive Domains for 3D Cell Culture</atitle><jtitle>Advanced functional materials</jtitle><date>2023-11-23</date><risdate>2023</risdate><volume>33</volume><issue>48</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Photo‐crosslinkable platelet lysate (PL)‐based hydrogels have been proven to support human‐derived cell cultures owing to their high content of bioactive molecules, such as cytokines and growth factors. As a unique self‐maintained and biocompatible 3D scaffold, the recently reported self‐feeding hydrogels with enzyme‐empowered degradation capacity have shown high biological performance in vitro and in vivo. To take advantage of all features of both PL and self‐feeding hydrogels, here UV responsive laminaran‐methacrylate (LamMA) and PL‐methacrylate (PLMA) derivatives plus glucoamylase (GA), which significantly improve the overall features of a 3D system, is coupled. This self‐sustaining hybrid hydrogel emerges as a unique scaffold due to the sustained delivery of glucose produced via enzymatic degradation of laminaran while granting the release of growth factors through the presence of PL. This biomaterial is applied to fabricate high‐throughput freestanding microgels with controlled geometric shapes. Furthermore, this multicomponent hybrid hydrogel is successfully implemented as the first reported glucose supplier bioink to manufacture intricate and precisely defined cell‐laden structures using a support matrix. Finally, such hydrogels are utilized as a proof of concept to serve as 3D in vitro cancer models, with the aim of recapitulating the tumor microenvironment.
Self‐sustaining hydrogels emerge as a unique scaffold due to the sustained delivery of glucose produced via enzymatic degradation of laminaran while granting the release of growth factors through the presence of platelet lysate. This multifunctional hydrogel holds promise for the future development of 3D structures in a variety of biotechnological applications as an autonomous cell‐supporting system with high cell functionality.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202214372</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4740-9538</orcidid><orcidid>https://orcid.org/0000-0002-2342-3765</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2023-11, Vol.33 (48), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2892574816 |
source | Wiley Online Library All Journals |
subjects | 3D cell culture Biocompatibility Biological activity Biomedical materials Degradation Glucose Growth factors Hydrogels laminaran Materials science Nutrients platelet‐lysate Scaffolds self‐sustaining |
title | A Self‐Sustaining Hydrogels with Autonomous Supply of Nutrients and Bioactive Domains for 3D Cell Culture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A24%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Self%E2%80%90Sustaining%20Hydrogels%20with%20Autonomous%20Supply%20of%20Nutrients%20and%20Bioactive%20Domains%20for%203D%20Cell%20Culture&rft.jtitle=Advanced%20functional%20materials&rft.au=Zargarzadeh,%20Mehrzad&rft.date=2023-11-23&rft.volume=33&rft.issue=48&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202214372&rft_dat=%3Cproquest_cross%3E2892574816%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892574816&rft_id=info:pmid/&rfr_iscdi=true |