Stable Diffusion For Aerial Object Detection
Aerial object detection is a challenging task, in which one major obstacle lies in the limitations of large-scale data collection and the long-tail distribution of certain classes. Synthetic data offers a promising solution, especially with recent advances in diffusion-based methods like stable diff...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Jian, Yanan Yu, Fuxun Singh, Simranjit Stamoulis, Dimitrios |
description | Aerial object detection is a challenging task, in which one major obstacle lies in the limitations of large-scale data collection and the long-tail distribution of certain classes. Synthetic data offers a promising solution, especially with recent advances in diffusion-based methods like stable diffusion (SD). However, the direct application of diffusion methods to aerial domains poses unique challenges: stable diffusion's optimization for rich ground-level semantics doesn't align with the sparse nature of aerial objects, and the extraction of post-synthesis object coordinates remains problematic. To address these challenges, we introduce a synthetic data augmentation framework tailored for aerial images. It encompasses sparse-to-dense region of interest (ROI) extraction to bridge the semantic gap, fine-tuning the diffusion model with low-rank adaptation (LORA) to circumvent exhaustive retraining, and finally, a Copy-Paste method to compose synthesized objects with backgrounds, providing a nuanced approach to aerial object detection through synthetic data. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2892395893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892395893</sourcerecordid><originalsourceid>FETCH-proquest_journals_28923958933</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCS5JTMpJVXDJTEsrLc7Mz1Nwyy9ScEwtykzMUfBPykpNLlFwSS0BUkA5HgbWtMSc4lReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1qUB5SKN7KwNDK2NLWwNDYmThUASDUxMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892395893</pqid></control><display><type>article</type><title>Stable Diffusion For Aerial Object Detection</title><source>Free E- Journals</source><creator>Jian, Yanan ; Yu, Fuxun ; Singh, Simranjit ; Stamoulis, Dimitrios</creator><creatorcontrib>Jian, Yanan ; Yu, Fuxun ; Singh, Simranjit ; Stamoulis, Dimitrios</creatorcontrib><description>Aerial object detection is a challenging task, in which one major obstacle lies in the limitations of large-scale data collection and the long-tail distribution of certain classes. Synthetic data offers a promising solution, especially with recent advances in diffusion-based methods like stable diffusion (SD). However, the direct application of diffusion methods to aerial domains poses unique challenges: stable diffusion's optimization for rich ground-level semantics doesn't align with the sparse nature of aerial objects, and the extraction of post-synthesis object coordinates remains problematic. To address these challenges, we introduce a synthetic data augmentation framework tailored for aerial images. It encompasses sparse-to-dense region of interest (ROI) extraction to bridge the semantic gap, fine-tuning the diffusion model with low-rank adaptation (LORA) to circumvent exhaustive retraining, and finally, a Copy-Paste method to compose synthesized objects with backgrounds, providing a nuanced approach to aerial object detection through synthetic data.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data augmentation ; Data collection ; Object recognition ; Semantics ; Synthetic data</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Jian, Yanan</creatorcontrib><creatorcontrib>Yu, Fuxun</creatorcontrib><creatorcontrib>Singh, Simranjit</creatorcontrib><creatorcontrib>Stamoulis, Dimitrios</creatorcontrib><title>Stable Diffusion For Aerial Object Detection</title><title>arXiv.org</title><description>Aerial object detection is a challenging task, in which one major obstacle lies in the limitations of large-scale data collection and the long-tail distribution of certain classes. Synthetic data offers a promising solution, especially with recent advances in diffusion-based methods like stable diffusion (SD). However, the direct application of diffusion methods to aerial domains poses unique challenges: stable diffusion's optimization for rich ground-level semantics doesn't align with the sparse nature of aerial objects, and the extraction of post-synthesis object coordinates remains problematic. To address these challenges, we introduce a synthetic data augmentation framework tailored for aerial images. It encompasses sparse-to-dense region of interest (ROI) extraction to bridge the semantic gap, fine-tuning the diffusion model with low-rank adaptation (LORA) to circumvent exhaustive retraining, and finally, a Copy-Paste method to compose synthesized objects with backgrounds, providing a nuanced approach to aerial object detection through synthetic data.</description><subject>Data augmentation</subject><subject>Data collection</subject><subject>Object recognition</subject><subject>Semantics</subject><subject>Synthetic data</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCS5JTMpJVXDJTEsrLc7Mz1Nwyy9ScEwtykzMUfBPykpNLlFwSS0BUkA5HgbWtMSc4lReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1qUB5SKN7KwNDK2NLWwNDYmThUASDUxMg</recordid><startdate>20231121</startdate><enddate>20231121</enddate><creator>Jian, Yanan</creator><creator>Yu, Fuxun</creator><creator>Singh, Simranjit</creator><creator>Stamoulis, Dimitrios</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231121</creationdate><title>Stable Diffusion For Aerial Object Detection</title><author>Jian, Yanan ; Yu, Fuxun ; Singh, Simranjit ; Stamoulis, Dimitrios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28923958933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Data augmentation</topic><topic>Data collection</topic><topic>Object recognition</topic><topic>Semantics</topic><topic>Synthetic data</topic><toplevel>online_resources</toplevel><creatorcontrib>Jian, Yanan</creatorcontrib><creatorcontrib>Yu, Fuxun</creatorcontrib><creatorcontrib>Singh, Simranjit</creatorcontrib><creatorcontrib>Stamoulis, Dimitrios</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jian, Yanan</au><au>Yu, Fuxun</au><au>Singh, Simranjit</au><au>Stamoulis, Dimitrios</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Stable Diffusion For Aerial Object Detection</atitle><jtitle>arXiv.org</jtitle><date>2023-11-21</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Aerial object detection is a challenging task, in which one major obstacle lies in the limitations of large-scale data collection and the long-tail distribution of certain classes. Synthetic data offers a promising solution, especially with recent advances in diffusion-based methods like stable diffusion (SD). However, the direct application of diffusion methods to aerial domains poses unique challenges: stable diffusion's optimization for rich ground-level semantics doesn't align with the sparse nature of aerial objects, and the extraction of post-synthesis object coordinates remains problematic. To address these challenges, we introduce a synthetic data augmentation framework tailored for aerial images. It encompasses sparse-to-dense region of interest (ROI) extraction to bridge the semantic gap, fine-tuning the diffusion model with low-rank adaptation (LORA) to circumvent exhaustive retraining, and finally, a Copy-Paste method to compose synthesized objects with backgrounds, providing a nuanced approach to aerial object detection through synthetic data.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2892395893 |
source | Free E- Journals |
subjects | Data augmentation Data collection Object recognition Semantics Synthetic data |
title | Stable Diffusion For Aerial Object Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A07%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Stable%20Diffusion%20For%20Aerial%20Object%20Detection&rft.jtitle=arXiv.org&rft.au=Jian,%20Yanan&rft.date=2023-11-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2892395893%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892395893&rft_id=info:pmid/&rfr_iscdi=true |