HiPose: Hierarchical Binary Surface Encoding and Correspondence Pruning for RGB-D 6DoF Object Pose Estimation
In this work, we present a novel dense-correspondence method for 6DoF object pose estimation from a single RGB-D image. While many existing data-driven methods achieve impressive performance, they tend to be time-consuming due to their reliance on rendering-based refinement approaches. To circumvent...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lin, Yongliang Su, Yongzhi Nathan, Praveen Inuganti, Sandeep Yan, Di Sundermeyer, Martin Manhardt, Fabian Stricker, Didier Rambach, Jason Zhang, Yu |
description | In this work, we present a novel dense-correspondence method for 6DoF object pose estimation from a single RGB-D image. While many existing data-driven methods achieve impressive performance, they tend to be time-consuming due to their reliance on rendering-based refinement approaches. To circumvent this limitation, we present HiPose, which establishes 3D-3D correspondences in a coarse-to-fine manner with a hierarchical binary surface encoding. Unlike previous dense-correspondence methods, we estimate the correspondence surface by employing point-to-surface matching and iteratively constricting the surface until it becomes a correspondence point while gradually removing outliers. Extensive experiments on public benchmarks LM-O, YCB-V, and T-Less demonstrate that our method surpasses all refinement-free methods and is even on par with expensive refinement-based approaches. Crucially, our approach is computationally efficient and enables real-time critical applications with high accuracy requirements. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2892395781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892395781</sourcerecordid><originalsourceid>FETCH-proquest_journals_28923957813</originalsourceid><addsrcrecordid>eNqNzMEOwUAUheGJRKLBO9zEuknNKK2lKt0R7GVMp0xT93KnXXh7JB7A6iy-k78nAqnUNExmUg7E2Ps6iiI5X8g4VoG4F25P3i6hcJY1m5szuoGVQ80vOHZcaWMhR0OlwytoLCEjZusfhKXFj-25wy9VxHDYrsI1zNe0gd2ltqaFbxty37q7bh3hSPQr3Xg7_u1QTDb5KSvCB9Ozs74919Qxfugsk1SqNF4kU_Xf6w0Likgx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892395781</pqid></control><display><type>article</type><title>HiPose: Hierarchical Binary Surface Encoding and Correspondence Pruning for RGB-D 6DoF Object Pose Estimation</title><source>Free E- Journals</source><creator>Lin, Yongliang ; Su, Yongzhi ; Nathan, Praveen ; Inuganti, Sandeep ; Yan, Di ; Sundermeyer, Martin ; Manhardt, Fabian ; Stricker, Didier ; Rambach, Jason ; Zhang, Yu</creator><creatorcontrib>Lin, Yongliang ; Su, Yongzhi ; Nathan, Praveen ; Inuganti, Sandeep ; Yan, Di ; Sundermeyer, Martin ; Manhardt, Fabian ; Stricker, Didier ; Rambach, Jason ; Zhang, Yu</creatorcontrib><description>In this work, we present a novel dense-correspondence method for 6DoF object pose estimation from a single RGB-D image. While many existing data-driven methods achieve impressive performance, they tend to be time-consuming due to their reliance on rendering-based refinement approaches. To circumvent this limitation, we present HiPose, which establishes 3D-3D correspondences in a coarse-to-fine manner with a hierarchical binary surface encoding. Unlike previous dense-correspondence methods, we estimate the correspondence surface by employing point-to-surface matching and iteratively constricting the surface until it becomes a correspondence point while gradually removing outliers. Extensive experiments on public benchmarks LM-O, YCB-V, and T-Less demonstrate that our method surpasses all refinement-free methods and is even on par with expensive refinement-based approaches. Crucially, our approach is computationally efficient and enables real-time critical applications with high accuracy requirements.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coding ; Outliers (statistics) ; Pose estimation ; Surface matching</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Lin, Yongliang</creatorcontrib><creatorcontrib>Su, Yongzhi</creatorcontrib><creatorcontrib>Nathan, Praveen</creatorcontrib><creatorcontrib>Inuganti, Sandeep</creatorcontrib><creatorcontrib>Yan, Di</creatorcontrib><creatorcontrib>Sundermeyer, Martin</creatorcontrib><creatorcontrib>Manhardt, Fabian</creatorcontrib><creatorcontrib>Stricker, Didier</creatorcontrib><creatorcontrib>Rambach, Jason</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><title>HiPose: Hierarchical Binary Surface Encoding and Correspondence Pruning for RGB-D 6DoF Object Pose Estimation</title><title>arXiv.org</title><description>In this work, we present a novel dense-correspondence method for 6DoF object pose estimation from a single RGB-D image. While many existing data-driven methods achieve impressive performance, they tend to be time-consuming due to their reliance on rendering-based refinement approaches. To circumvent this limitation, we present HiPose, which establishes 3D-3D correspondences in a coarse-to-fine manner with a hierarchical binary surface encoding. Unlike previous dense-correspondence methods, we estimate the correspondence surface by employing point-to-surface matching and iteratively constricting the surface until it becomes a correspondence point while gradually removing outliers. Extensive experiments on public benchmarks LM-O, YCB-V, and T-Less demonstrate that our method surpasses all refinement-free methods and is even on par with expensive refinement-based approaches. Crucially, our approach is computationally efficient and enables real-time critical applications with high accuracy requirements.</description><subject>Coding</subject><subject>Outliers (statistics)</subject><subject>Pose estimation</subject><subject>Surface matching</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzMEOwUAUheGJRKLBO9zEuknNKK2lKt0R7GVMp0xT93KnXXh7JB7A6iy-k78nAqnUNExmUg7E2Ps6iiI5X8g4VoG4F25P3i6hcJY1m5szuoGVQ80vOHZcaWMhR0OlwytoLCEjZusfhKXFj-25wy9VxHDYrsI1zNe0gd2ltqaFbxty37q7bh3hSPQr3Xg7_u1QTDb5KSvCB9Ozs74919Qxfugsk1SqNF4kU_Xf6w0Likgx</recordid><startdate>20240407</startdate><enddate>20240407</enddate><creator>Lin, Yongliang</creator><creator>Su, Yongzhi</creator><creator>Nathan, Praveen</creator><creator>Inuganti, Sandeep</creator><creator>Yan, Di</creator><creator>Sundermeyer, Martin</creator><creator>Manhardt, Fabian</creator><creator>Stricker, Didier</creator><creator>Rambach, Jason</creator><creator>Zhang, Yu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240407</creationdate><title>HiPose: Hierarchical Binary Surface Encoding and Correspondence Pruning for RGB-D 6DoF Object Pose Estimation</title><author>Lin, Yongliang ; Su, Yongzhi ; Nathan, Praveen ; Inuganti, Sandeep ; Yan, Di ; Sundermeyer, Martin ; Manhardt, Fabian ; Stricker, Didier ; Rambach, Jason ; Zhang, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28923957813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coding</topic><topic>Outliers (statistics)</topic><topic>Pose estimation</topic><topic>Surface matching</topic><toplevel>online_resources</toplevel><creatorcontrib>Lin, Yongliang</creatorcontrib><creatorcontrib>Su, Yongzhi</creatorcontrib><creatorcontrib>Nathan, Praveen</creatorcontrib><creatorcontrib>Inuganti, Sandeep</creatorcontrib><creatorcontrib>Yan, Di</creatorcontrib><creatorcontrib>Sundermeyer, Martin</creatorcontrib><creatorcontrib>Manhardt, Fabian</creatorcontrib><creatorcontrib>Stricker, Didier</creatorcontrib><creatorcontrib>Rambach, Jason</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Yongliang</au><au>Su, Yongzhi</au><au>Nathan, Praveen</au><au>Inuganti, Sandeep</au><au>Yan, Di</au><au>Sundermeyer, Martin</au><au>Manhardt, Fabian</au><au>Stricker, Didier</au><au>Rambach, Jason</au><au>Zhang, Yu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>HiPose: Hierarchical Binary Surface Encoding and Correspondence Pruning for RGB-D 6DoF Object Pose Estimation</atitle><jtitle>arXiv.org</jtitle><date>2024-04-07</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this work, we present a novel dense-correspondence method for 6DoF object pose estimation from a single RGB-D image. While many existing data-driven methods achieve impressive performance, they tend to be time-consuming due to their reliance on rendering-based refinement approaches. To circumvent this limitation, we present HiPose, which establishes 3D-3D correspondences in a coarse-to-fine manner with a hierarchical binary surface encoding. Unlike previous dense-correspondence methods, we estimate the correspondence surface by employing point-to-surface matching and iteratively constricting the surface until it becomes a correspondence point while gradually removing outliers. Extensive experiments on public benchmarks LM-O, YCB-V, and T-Less demonstrate that our method surpasses all refinement-free methods and is even on par with expensive refinement-based approaches. Crucially, our approach is computationally efficient and enables real-time critical applications with high accuracy requirements.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2892395781 |
source | Free E- Journals |
subjects | Coding Outliers (statistics) Pose estimation Surface matching |
title | HiPose: Hierarchical Binary Surface Encoding and Correspondence Pruning for RGB-D 6DoF Object Pose Estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A05%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=HiPose:%20Hierarchical%20Binary%20Surface%20Encoding%20and%20Correspondence%20Pruning%20for%20RGB-D%206DoF%20Object%20Pose%20Estimation&rft.jtitle=arXiv.org&rft.au=Lin,%20Yongliang&rft.date=2024-04-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2892395781%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892395781&rft_id=info:pmid/&rfr_iscdi=true |