PredictEYE: Personalized Time Series Model for Mental State Prediction using Eye Tracking

Mental health is vital for emotional, psychological, and social well-being. Mental illness can affect thoughts, feelings, and behaviors. Early intervention and specialized care can manage major mental illnesses. Predicting mental state accurately can facilitate behavioral changes and promote overall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Jyotsna, C., Amudha, J., Ram, Amritanshu, Fruet, Damiano, Nollo, Giandomenico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Jyotsna, C.
Amudha, J.
Ram, Amritanshu
Fruet, Damiano
Nollo, Giandomenico
description Mental health is vital for emotional, psychological, and social well-being. Mental illness can affect thoughts, feelings, and behaviors. Early intervention and specialized care can manage major mental illnesses. Predicting mental state accurately can facilitate behavioral changes and promote overall well-being. The paper proposes a novel personalized time series model called PredictEYE, which aims to predict a person's mental state and identify the specific scene responsible for that mental state. The model achieves this by analyzing individuals' eye-tracking time series data while watching calm and stressful videos. The model utilizes deep learning time-series univariate regression model based on Long Short-Term Memory for predicting the future sequence of each feature and a machine learning-based Random Forest algorithm for the mental state prediction. The model's performance was compared across the state-of-the-art literature survey. The predictEYE model could achieve an accuracy of 86.4% accuracy in predicting mental state. Tailoring eye tracking models to individual differences is more effective in comprehending mental states than models that make comparisons across multiple participants, given eye tracking data's unique and distinctive idiosyncratic nature. The eye tracking features play a crucial role in predicting the mental state, and the model is adaptable to work with webcam-based eye tracking and can relate to applications where continuous and non-invasive monitoring is required.
doi_str_mv 10.1109/ACCESS.2023.3332762
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2892377972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10318110</ieee_id><doaj_id>oai_doaj_org_article_8fcf29bbf5454f0391f64b368a72479e</doaj_id><sourcerecordid>2892377972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-73e4e38b9ab556f336eb64d6fe1d61000acca57e6c2380e046602e284ad3db113</originalsourceid><addsrcrecordid>eNpNkUFvGyEQhVdRK8VK8wuSA1LPdoFhYcnNsrZppFiNZPeQE2LZIcJZmxTWh-TXh3StKlwGnuZ7g-ZV1RWjC8ao_rFcrdrNZsEphwUAcCX5WTXjTOo51CC_fLqfV5c572g5TZFqNaseHxL2wY3tY3tDHjDleLBDeMOebMMeyQZTwEzWsceB-JjIGg-jHchmtCOSExvigRxzODyR9hXJNln3XB7fqq_eDhkvT_Wi-vOz3a5-ze9_396tlvdzJ6ge5wpQIDSdtl1dSw8gsZOilx5ZL1n5qXXO1gql49BQpEJKypE3wvbQd4zBRXU3-fbR7sxLCnubXk20wfwTYnoyNo3BDWga7zzXXedrUQtPQTMvRQeysYoLpbF4fZ-8XlL8e8Q8ml08prKRbHijOSilFS9dMHW5FHNO6P9PZdR8RGKmSMxHJOYUSaGuJyog4icCWFMYeAczYoZT</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892377972</pqid></control><display><type>article</type><title>PredictEYE: Personalized Time Series Model for Mental State Prediction using Eye Tracking</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jyotsna, C. ; Amudha, J. ; Ram, Amritanshu ; Fruet, Damiano ; Nollo, Giandomenico</creator><creatorcontrib>Jyotsna, C. ; Amudha, J. ; Ram, Amritanshu ; Fruet, Damiano ; Nollo, Giandomenico</creatorcontrib><description>Mental health is vital for emotional, psychological, and social well-being. Mental illness can affect thoughts, feelings, and behaviors. Early intervention and specialized care can manage major mental illnesses. Predicting mental state accurately can facilitate behavioral changes and promote overall well-being. The paper proposes a novel personalized time series model called PredictEYE, which aims to predict a person's mental state and identify the specific scene responsible for that mental state. The model achieves this by analyzing individuals' eye-tracking time series data while watching calm and stressful videos. The model utilizes deep learning time-series univariate regression model based on Long Short-Term Memory for predicting the future sequence of each feature and a machine learning-based Random Forest algorithm for the mental state prediction. The model's performance was compared across the state-of-the-art literature survey. The predictEYE model could achieve an accuracy of 86.4% accuracy in predicting mental state. Tailoring eye tracking models to individual differences is more effective in comprehending mental states than models that make comparisons across multiple participants, given eye tracking data's unique and distinctive idiosyncratic nature. The eye tracking features play a crucial role in predicting the mental state, and the model is adaptable to work with webcam-based eye tracking and can relate to applications where continuous and non-invasive monitoring is required.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3332762</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; Biomedical monitoring ; Customization ; Data models ; Deep learning ; Eye movements ; Eye Tracking ; Galvanic skin response ; Gaze tracking ; Illnesses ; Literature reviews ; Long short term memory ; Machine learning ; Mental disorders ; Mental health ; Mental state prediction ; Monitoring ; Predictive models ; Regression models ; Time series ; Time series analysis ; Tracking</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-73e4e38b9ab556f336eb64d6fe1d61000acca57e6c2380e046602e284ad3db113</citedby><cites>FETCH-LOGICAL-c409t-73e4e38b9ab556f336eb64d6fe1d61000acca57e6c2380e046602e284ad3db113</cites><orcidid>0000-0002-9837-083X ; 0000-0001-6736-2573 ; 0000-0001-6256-9372 ; 0000-0002-0657-8079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10318110$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,27624,27915,27916,54924</link.rule.ids></links><search><creatorcontrib>Jyotsna, C.</creatorcontrib><creatorcontrib>Amudha, J.</creatorcontrib><creatorcontrib>Ram, Amritanshu</creatorcontrib><creatorcontrib>Fruet, Damiano</creatorcontrib><creatorcontrib>Nollo, Giandomenico</creatorcontrib><title>PredictEYE: Personalized Time Series Model for Mental State Prediction using Eye Tracking</title><title>IEEE access</title><addtitle>Access</addtitle><description>Mental health is vital for emotional, psychological, and social well-being. Mental illness can affect thoughts, feelings, and behaviors. Early intervention and specialized care can manage major mental illnesses. Predicting mental state accurately can facilitate behavioral changes and promote overall well-being. The paper proposes a novel personalized time series model called PredictEYE, which aims to predict a person's mental state and identify the specific scene responsible for that mental state. The model achieves this by analyzing individuals' eye-tracking time series data while watching calm and stressful videos. The model utilizes deep learning time-series univariate regression model based on Long Short-Term Memory for predicting the future sequence of each feature and a machine learning-based Random Forest algorithm for the mental state prediction. The model's performance was compared across the state-of-the-art literature survey. The predictEYE model could achieve an accuracy of 86.4% accuracy in predicting mental state. Tailoring eye tracking models to individual differences is more effective in comprehending mental states than models that make comparisons across multiple participants, given eye tracking data's unique and distinctive idiosyncratic nature. The eye tracking features play a crucial role in predicting the mental state, and the model is adaptable to work with webcam-based eye tracking and can relate to applications where continuous and non-invasive monitoring is required.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Biomedical monitoring</subject><subject>Customization</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Eye movements</subject><subject>Eye Tracking</subject><subject>Galvanic skin response</subject><subject>Gaze tracking</subject><subject>Illnesses</subject><subject>Literature reviews</subject><subject>Long short term memory</subject><subject>Machine learning</subject><subject>Mental disorders</subject><subject>Mental health</subject><subject>Mental state prediction</subject><subject>Monitoring</subject><subject>Predictive models</subject><subject>Regression models</subject><subject>Time series</subject><subject>Time series analysis</subject><subject>Tracking</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUFvGyEQhVdRK8VK8wuSA1LPdoFhYcnNsrZppFiNZPeQE2LZIcJZmxTWh-TXh3StKlwGnuZ7g-ZV1RWjC8ao_rFcrdrNZsEphwUAcCX5WTXjTOo51CC_fLqfV5c572g5TZFqNaseHxL2wY3tY3tDHjDleLBDeMOebMMeyQZTwEzWsceB-JjIGg-jHchmtCOSExvigRxzODyR9hXJNln3XB7fqq_eDhkvT_Wi-vOz3a5-ze9_396tlvdzJ6ge5wpQIDSdtl1dSw8gsZOilx5ZL1n5qXXO1gql49BQpEJKypE3wvbQd4zBRXU3-fbR7sxLCnubXk20wfwTYnoyNo3BDWga7zzXXedrUQtPQTMvRQeysYoLpbF4fZ-8XlL8e8Q8ml08prKRbHijOSilFS9dMHW5FHNO6P9PZdR8RGKmSMxHJOYUSaGuJyog4icCWFMYeAczYoZT</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Jyotsna, C.</creator><creator>Amudha, J.</creator><creator>Ram, Amritanshu</creator><creator>Fruet, Damiano</creator><creator>Nollo, Giandomenico</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9837-083X</orcidid><orcidid>https://orcid.org/0000-0001-6736-2573</orcidid><orcidid>https://orcid.org/0000-0001-6256-9372</orcidid><orcidid>https://orcid.org/0000-0002-0657-8079</orcidid></search><sort><creationdate>20230101</creationdate><title>PredictEYE: Personalized Time Series Model for Mental State Prediction using Eye Tracking</title><author>Jyotsna, C. ; Amudha, J. ; Ram, Amritanshu ; Fruet, Damiano ; Nollo, Giandomenico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-73e4e38b9ab556f336eb64d6fe1d61000acca57e6c2380e046602e284ad3db113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Biomedical monitoring</topic><topic>Customization</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Eye movements</topic><topic>Eye Tracking</topic><topic>Galvanic skin response</topic><topic>Gaze tracking</topic><topic>Illnesses</topic><topic>Literature reviews</topic><topic>Long short term memory</topic><topic>Machine learning</topic><topic>Mental disorders</topic><topic>Mental health</topic><topic>Mental state prediction</topic><topic>Monitoring</topic><topic>Predictive models</topic><topic>Regression models</topic><topic>Time series</topic><topic>Time series analysis</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jyotsna, C.</creatorcontrib><creatorcontrib>Amudha, J.</creatorcontrib><creatorcontrib>Ram, Amritanshu</creatorcontrib><creatorcontrib>Fruet, Damiano</creatorcontrib><creatorcontrib>Nollo, Giandomenico</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jyotsna, C.</au><au>Amudha, J.</au><au>Ram, Amritanshu</au><au>Fruet, Damiano</au><au>Nollo, Giandomenico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PredictEYE: Personalized Time Series Model for Mental State Prediction using Eye Tracking</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Mental health is vital for emotional, psychological, and social well-being. Mental illness can affect thoughts, feelings, and behaviors. Early intervention and specialized care can manage major mental illnesses. Predicting mental state accurately can facilitate behavioral changes and promote overall well-being. The paper proposes a novel personalized time series model called PredictEYE, which aims to predict a person's mental state and identify the specific scene responsible for that mental state. The model achieves this by analyzing individuals' eye-tracking time series data while watching calm and stressful videos. The model utilizes deep learning time-series univariate regression model based on Long Short-Term Memory for predicting the future sequence of each feature and a machine learning-based Random Forest algorithm for the mental state prediction. The model's performance was compared across the state-of-the-art literature survey. The predictEYE model could achieve an accuracy of 86.4% accuracy in predicting mental state. Tailoring eye tracking models to individual differences is more effective in comprehending mental states than models that make comparisons across multiple participants, given eye tracking data's unique and distinctive idiosyncratic nature. The eye tracking features play a crucial role in predicting the mental state, and the model is adaptable to work with webcam-based eye tracking and can relate to applications where continuous and non-invasive monitoring is required.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3332762</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9837-083X</orcidid><orcidid>https://orcid.org/0000-0001-6736-2573</orcidid><orcidid>https://orcid.org/0000-0001-6256-9372</orcidid><orcidid>https://orcid.org/0000-0002-0657-8079</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2892377972
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Algorithms
Biomedical monitoring
Customization
Data models
Deep learning
Eye movements
Eye Tracking
Galvanic skin response
Gaze tracking
Illnesses
Literature reviews
Long short term memory
Machine learning
Mental disorders
Mental health
Mental state prediction
Monitoring
Predictive models
Regression models
Time series
Time series analysis
Tracking
title PredictEYE: Personalized Time Series Model for Mental State Prediction using Eye Tracking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A02%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PredictEYE:%20Personalized%20Time%20Series%20Model%20for%20Mental%20State%20Prediction%20using%20Eye%20Tracking&rft.jtitle=IEEE%20access&rft.au=Jyotsna,%20C.&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3332762&rft_dat=%3Cproquest_cross%3E2892377972%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892377972&rft_id=info:pmid/&rft_ieee_id=10318110&rft_doaj_id=oai_doaj_org_article_8fcf29bbf5454f0391f64b368a72479e&rfr_iscdi=true