PredictEYE: Personalized Time Series Model for Mental State Prediction using Eye Tracking
Mental health is vital for emotional, psychological, and social well-being. Mental illness can affect thoughts, feelings, and behaviors. Early intervention and specialized care can manage major mental illnesses. Predicting mental state accurately can facilitate behavioral changes and promote overall...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Jyotsna, C. Amudha, J. Ram, Amritanshu Fruet, Damiano Nollo, Giandomenico |
description | Mental health is vital for emotional, psychological, and social well-being. Mental illness can affect thoughts, feelings, and behaviors. Early intervention and specialized care can manage major mental illnesses. Predicting mental state accurately can facilitate behavioral changes and promote overall well-being. The paper proposes a novel personalized time series model called PredictEYE, which aims to predict a person's mental state and identify the specific scene responsible for that mental state. The model achieves this by analyzing individuals' eye-tracking time series data while watching calm and stressful videos. The model utilizes deep learning time-series univariate regression model based on Long Short-Term Memory for predicting the future sequence of each feature and a machine learning-based Random Forest algorithm for the mental state prediction. The model's performance was compared across the state-of-the-art literature survey. The predictEYE model could achieve an accuracy of 86.4% accuracy in predicting mental state. Tailoring eye tracking models to individual differences is more effective in comprehending mental states than models that make comparisons across multiple participants, given eye tracking data's unique and distinctive idiosyncratic nature. The eye tracking features play a crucial role in predicting the mental state, and the model is adaptable to work with webcam-based eye tracking and can relate to applications where continuous and non-invasive monitoring is required. |
doi_str_mv | 10.1109/ACCESS.2023.3332762 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2892377972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10318110</ieee_id><doaj_id>oai_doaj_org_article_8fcf29bbf5454f0391f64b368a72479e</doaj_id><sourcerecordid>2892377972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-73e4e38b9ab556f336eb64d6fe1d61000acca57e6c2380e046602e284ad3db113</originalsourceid><addsrcrecordid>eNpNkUFvGyEQhVdRK8VK8wuSA1LPdoFhYcnNsrZppFiNZPeQE2LZIcJZmxTWh-TXh3StKlwGnuZ7g-ZV1RWjC8ao_rFcrdrNZsEphwUAcCX5WTXjTOo51CC_fLqfV5c572g5TZFqNaseHxL2wY3tY3tDHjDleLBDeMOebMMeyQZTwEzWsceB-JjIGg-jHchmtCOSExvigRxzODyR9hXJNln3XB7fqq_eDhkvT_Wi-vOz3a5-ze9_396tlvdzJ6ge5wpQIDSdtl1dSw8gsZOilx5ZL1n5qXXO1gql49BQpEJKypE3wvbQd4zBRXU3-fbR7sxLCnubXk20wfwTYnoyNo3BDWga7zzXXedrUQtPQTMvRQeysYoLpbF4fZ-8XlL8e8Q8ml08prKRbHijOSilFS9dMHW5FHNO6P9PZdR8RGKmSMxHJOYUSaGuJyog4icCWFMYeAczYoZT</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892377972</pqid></control><display><type>article</type><title>PredictEYE: Personalized Time Series Model for Mental State Prediction using Eye Tracking</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jyotsna, C. ; Amudha, J. ; Ram, Amritanshu ; Fruet, Damiano ; Nollo, Giandomenico</creator><creatorcontrib>Jyotsna, C. ; Amudha, J. ; Ram, Amritanshu ; Fruet, Damiano ; Nollo, Giandomenico</creatorcontrib><description>Mental health is vital for emotional, psychological, and social well-being. Mental illness can affect thoughts, feelings, and behaviors. Early intervention and specialized care can manage major mental illnesses. Predicting mental state accurately can facilitate behavioral changes and promote overall well-being. The paper proposes a novel personalized time series model called PredictEYE, which aims to predict a person's mental state and identify the specific scene responsible for that mental state. The model achieves this by analyzing individuals' eye-tracking time series data while watching calm and stressful videos. The model utilizes deep learning time-series univariate regression model based on Long Short-Term Memory for predicting the future sequence of each feature and a machine learning-based Random Forest algorithm for the mental state prediction. The model's performance was compared across the state-of-the-art literature survey. The predictEYE model could achieve an accuracy of 86.4% accuracy in predicting mental state. Tailoring eye tracking models to individual differences is more effective in comprehending mental states than models that make comparisons across multiple participants, given eye tracking data's unique and distinctive idiosyncratic nature. The eye tracking features play a crucial role in predicting the mental state, and the model is adaptable to work with webcam-based eye tracking and can relate to applications where continuous and non-invasive monitoring is required.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3332762</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; Biomedical monitoring ; Customization ; Data models ; Deep learning ; Eye movements ; Eye Tracking ; Galvanic skin response ; Gaze tracking ; Illnesses ; Literature reviews ; Long short term memory ; Machine learning ; Mental disorders ; Mental health ; Mental state prediction ; Monitoring ; Predictive models ; Regression models ; Time series ; Time series analysis ; Tracking</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-73e4e38b9ab556f336eb64d6fe1d61000acca57e6c2380e046602e284ad3db113</citedby><cites>FETCH-LOGICAL-c409t-73e4e38b9ab556f336eb64d6fe1d61000acca57e6c2380e046602e284ad3db113</cites><orcidid>0000-0002-9837-083X ; 0000-0001-6736-2573 ; 0000-0001-6256-9372 ; 0000-0002-0657-8079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10318110$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,27624,27915,27916,54924</link.rule.ids></links><search><creatorcontrib>Jyotsna, C.</creatorcontrib><creatorcontrib>Amudha, J.</creatorcontrib><creatorcontrib>Ram, Amritanshu</creatorcontrib><creatorcontrib>Fruet, Damiano</creatorcontrib><creatorcontrib>Nollo, Giandomenico</creatorcontrib><title>PredictEYE: Personalized Time Series Model for Mental State Prediction using Eye Tracking</title><title>IEEE access</title><addtitle>Access</addtitle><description>Mental health is vital for emotional, psychological, and social well-being. Mental illness can affect thoughts, feelings, and behaviors. Early intervention and specialized care can manage major mental illnesses. Predicting mental state accurately can facilitate behavioral changes and promote overall well-being. The paper proposes a novel personalized time series model called PredictEYE, which aims to predict a person's mental state and identify the specific scene responsible for that mental state. The model achieves this by analyzing individuals' eye-tracking time series data while watching calm and stressful videos. The model utilizes deep learning time-series univariate regression model based on Long Short-Term Memory for predicting the future sequence of each feature and a machine learning-based Random Forest algorithm for the mental state prediction. The model's performance was compared across the state-of-the-art literature survey. The predictEYE model could achieve an accuracy of 86.4% accuracy in predicting mental state. Tailoring eye tracking models to individual differences is more effective in comprehending mental states than models that make comparisons across multiple participants, given eye tracking data's unique and distinctive idiosyncratic nature. The eye tracking features play a crucial role in predicting the mental state, and the model is adaptable to work with webcam-based eye tracking and can relate to applications where continuous and non-invasive monitoring is required.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Biomedical monitoring</subject><subject>Customization</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Eye movements</subject><subject>Eye Tracking</subject><subject>Galvanic skin response</subject><subject>Gaze tracking</subject><subject>Illnesses</subject><subject>Literature reviews</subject><subject>Long short term memory</subject><subject>Machine learning</subject><subject>Mental disorders</subject><subject>Mental health</subject><subject>Mental state prediction</subject><subject>Monitoring</subject><subject>Predictive models</subject><subject>Regression models</subject><subject>Time series</subject><subject>Time series analysis</subject><subject>Tracking</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUFvGyEQhVdRK8VK8wuSA1LPdoFhYcnNsrZppFiNZPeQE2LZIcJZmxTWh-TXh3StKlwGnuZ7g-ZV1RWjC8ao_rFcrdrNZsEphwUAcCX5WTXjTOo51CC_fLqfV5c572g5TZFqNaseHxL2wY3tY3tDHjDleLBDeMOebMMeyQZTwEzWsceB-JjIGg-jHchmtCOSExvigRxzODyR9hXJNln3XB7fqq_eDhkvT_Wi-vOz3a5-ze9_396tlvdzJ6ge5wpQIDSdtl1dSw8gsZOilx5ZL1n5qXXO1gql49BQpEJKypE3wvbQd4zBRXU3-fbR7sxLCnubXk20wfwTYnoyNo3BDWga7zzXXedrUQtPQTMvRQeysYoLpbF4fZ-8XlL8e8Q8ml08prKRbHijOSilFS9dMHW5FHNO6P9PZdR8RGKmSMxHJOYUSaGuJyog4icCWFMYeAczYoZT</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Jyotsna, C.</creator><creator>Amudha, J.</creator><creator>Ram, Amritanshu</creator><creator>Fruet, Damiano</creator><creator>Nollo, Giandomenico</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9837-083X</orcidid><orcidid>https://orcid.org/0000-0001-6736-2573</orcidid><orcidid>https://orcid.org/0000-0001-6256-9372</orcidid><orcidid>https://orcid.org/0000-0002-0657-8079</orcidid></search><sort><creationdate>20230101</creationdate><title>PredictEYE: Personalized Time Series Model for Mental State Prediction using Eye Tracking</title><author>Jyotsna, C. ; Amudha, J. ; Ram, Amritanshu ; Fruet, Damiano ; Nollo, Giandomenico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-73e4e38b9ab556f336eb64d6fe1d61000acca57e6c2380e046602e284ad3db113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Biomedical monitoring</topic><topic>Customization</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Eye movements</topic><topic>Eye Tracking</topic><topic>Galvanic skin response</topic><topic>Gaze tracking</topic><topic>Illnesses</topic><topic>Literature reviews</topic><topic>Long short term memory</topic><topic>Machine learning</topic><topic>Mental disorders</topic><topic>Mental health</topic><topic>Mental state prediction</topic><topic>Monitoring</topic><topic>Predictive models</topic><topic>Regression models</topic><topic>Time series</topic><topic>Time series analysis</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jyotsna, C.</creatorcontrib><creatorcontrib>Amudha, J.</creatorcontrib><creatorcontrib>Ram, Amritanshu</creatorcontrib><creatorcontrib>Fruet, Damiano</creatorcontrib><creatorcontrib>Nollo, Giandomenico</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jyotsna, C.</au><au>Amudha, J.</au><au>Ram, Amritanshu</au><au>Fruet, Damiano</au><au>Nollo, Giandomenico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PredictEYE: Personalized Time Series Model for Mental State Prediction using Eye Tracking</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Mental health is vital for emotional, psychological, and social well-being. Mental illness can affect thoughts, feelings, and behaviors. Early intervention and specialized care can manage major mental illnesses. Predicting mental state accurately can facilitate behavioral changes and promote overall well-being. The paper proposes a novel personalized time series model called PredictEYE, which aims to predict a person's mental state and identify the specific scene responsible for that mental state. The model achieves this by analyzing individuals' eye-tracking time series data while watching calm and stressful videos. The model utilizes deep learning time-series univariate regression model based on Long Short-Term Memory for predicting the future sequence of each feature and a machine learning-based Random Forest algorithm for the mental state prediction. The model's performance was compared across the state-of-the-art literature survey. The predictEYE model could achieve an accuracy of 86.4% accuracy in predicting mental state. Tailoring eye tracking models to individual differences is more effective in comprehending mental states than models that make comparisons across multiple participants, given eye tracking data's unique and distinctive idiosyncratic nature. The eye tracking features play a crucial role in predicting the mental state, and the model is adaptable to work with webcam-based eye tracking and can relate to applications where continuous and non-invasive monitoring is required.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3332762</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9837-083X</orcidid><orcidid>https://orcid.org/0000-0001-6736-2573</orcidid><orcidid>https://orcid.org/0000-0001-6256-9372</orcidid><orcidid>https://orcid.org/0000-0002-0657-8079</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2892377972 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Algorithms Biomedical monitoring Customization Data models Deep learning Eye movements Eye Tracking Galvanic skin response Gaze tracking Illnesses Literature reviews Long short term memory Machine learning Mental disorders Mental health Mental state prediction Monitoring Predictive models Regression models Time series Time series analysis Tracking |
title | PredictEYE: Personalized Time Series Model for Mental State Prediction using Eye Tracking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A02%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PredictEYE:%20Personalized%20Time%20Series%20Model%20for%20Mental%20State%20Prediction%20using%20Eye%20Tracking&rft.jtitle=IEEE%20access&rft.au=Jyotsna,%20C.&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3332762&rft_dat=%3Cproquest_cross%3E2892377972%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892377972&rft_id=info:pmid/&rft_ieee_id=10318110&rft_doaj_id=oai_doaj_org_article_8fcf29bbf5454f0391f64b368a72479e&rfr_iscdi=true |