Fine-grained Spatio-temporal Parsing Network for Action Quality Assessment
Action Quality Assessment (AQA) plays an important role in video analysis, which is applied to evaluate the quality of specific actions, i.e ., sports activities. However, it is still challenging because there are lots of small action discrepancies with similar backgrounds, but current approaches mo...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2023-01, Vol.32, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on image processing |
container_volume | 32 |
creator | Gedamu, Kumie Ji, Yanli Yang, Yang Shao, Jie Shen, Heng Tao |
description | Action Quality Assessment (AQA) plays an important role in video analysis, which is applied to evaluate the quality of specific actions, i.e ., sports activities. However, it is still challenging because there are lots of small action discrepancies with similar backgrounds, but current approaches mostly adopt holistic video representations. So that fine-grained intra-class variations are unable to be captured. To address the aforementioned challenge, we propose a Fine-grained Spatio-temporal Parsing Network (FSPN) which is composed of the intra-sequence action parsing module and spatiotemporal multiscale transformer module to learn fine-grained spatiotemporal sub-action representations for more reliable AQA. The intra-sequence action parsing module performs semantical sub-action parsing by mining sub-actions at fine-grained levels. It enables a correct description of the subtle differences between action sequences. The spatiotemporal multiscale transformer module learns motion-oriented action features and obtains their long-range dependencies among sub-actions at different scales. Furthermore, we design a group contrastive loss to train the model and learn more discriminative feature representations for sub-actions without explicit supervision. We exhaustively evaluate our proposed approach in the FineDiving, AQA-7, and MTL-AQA datasets. Extensive experiment results demonstrate the effectiveness and feasibility of our proposed approach, which outperforms the state-of-the-art methods by a significant margin. |
doi_str_mv | 10.1109/TIP.2023.3331212 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2892375349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10317826</ieee_id><sourcerecordid>2892375349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-55b5b5684a4a717f65e610ede57cafeb7680886b88eb5a1a1ffd52541a3e0f513</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhoMoWKt3Dx4CXryk7ux3jqVYrRStWM9hk05KapKNuwnSf--WehCZwzuH5x2GJ4qugUwASHq_XqwmlFA2YYwBBXoSjSDlkBDC6WnYiVCJAp6eRxfe7wgBLkCOoud51WKydSbEJn7vTF_ZpMems87U8co4X7Xb-AX7b-s-49K6eFoEpI3fBlNX_T6eeo_eN9j2l9FZaWqPV785jj7mD-vZU7J8fVzMpsukoEr3iRB5GKm54UaBKqVACQQ3KFRhSsyV1ERrmWuNuTBgoCw3ggoOhiEpBbBxdHe82zn7NaDvs6byBda1adEOPqM6JUxyTlRAb_-hOzu4Nnx3oChTgvE0UORIFc5677DMOlc1xu0zINlBbhbkZge52a_cULk5VipE_IMzUJpK9gP8jXTe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892375349</pqid></control><display><type>article</type><title>Fine-grained Spatio-temporal Parsing Network for Action Quality Assessment</title><source>IEEE Electronic Library (IEL)</source><creator>Gedamu, Kumie ; Ji, Yanli ; Yang, Yang ; Shao, Jie ; Shen, Heng Tao</creator><creatorcontrib>Gedamu, Kumie ; Ji, Yanli ; Yang, Yang ; Shao, Jie ; Shen, Heng Tao</creatorcontrib><description>Action Quality Assessment (AQA) plays an important role in video analysis, which is applied to evaluate the quality of specific actions, i.e ., sports activities. However, it is still challenging because there are lots of small action discrepancies with similar backgrounds, but current approaches mostly adopt holistic video representations. So that fine-grained intra-class variations are unable to be captured. To address the aforementioned challenge, we propose a Fine-grained Spatio-temporal Parsing Network (FSPN) which is composed of the intra-sequence action parsing module and spatiotemporal multiscale transformer module to learn fine-grained spatiotemporal sub-action representations for more reliable AQA. The intra-sequence action parsing module performs semantical sub-action parsing by mining sub-actions at fine-grained levels. It enables a correct description of the subtle differences between action sequences. The spatiotemporal multiscale transformer module learns motion-oriented action features and obtains their long-range dependencies among sub-actions at different scales. Furthermore, we design a group contrastive loss to train the model and learn more discriminative feature representations for sub-actions without explicit supervision. We exhaustively evaluate our proposed approach in the FineDiving, AQA-7, and MTL-AQA datasets. Extensive experiment results demonstrate the effectiveness and feasibility of our proposed approach, which outperforms the state-of-the-art methods by a significant margin.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2023.3331212</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Action parsing ; Action quality assessment ; Decoding ; Fine-grained representation ; Modules ; Multiscale transformer ; Quality assessment ; Representations ; Semantics ; Spatiotemporal phenomena ; Sports ; Task analysis ; Transformers</subject><ispartof>IEEE transactions on image processing, 2023-01, Vol.32, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c278t-55b5b5684a4a717f65e610ede57cafeb7680886b88eb5a1a1ffd52541a3e0f513</cites><orcidid>0000-0002-5070-4511 ; 0000-0003-2615-1555 ; 0000-0002-6458-1882 ; 0000-0001-9122-6141 ; 0000-0002-2999-2088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10317826$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10317826$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gedamu, Kumie</creatorcontrib><creatorcontrib>Ji, Yanli</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Shao, Jie</creatorcontrib><creatorcontrib>Shen, Heng Tao</creatorcontrib><title>Fine-grained Spatio-temporal Parsing Network for Action Quality Assessment</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><description>Action Quality Assessment (AQA) plays an important role in video analysis, which is applied to evaluate the quality of specific actions, i.e ., sports activities. However, it is still challenging because there are lots of small action discrepancies with similar backgrounds, but current approaches mostly adopt holistic video representations. So that fine-grained intra-class variations are unable to be captured. To address the aforementioned challenge, we propose a Fine-grained Spatio-temporal Parsing Network (FSPN) which is composed of the intra-sequence action parsing module and spatiotemporal multiscale transformer module to learn fine-grained spatiotemporal sub-action representations for more reliable AQA. The intra-sequence action parsing module performs semantical sub-action parsing by mining sub-actions at fine-grained levels. It enables a correct description of the subtle differences between action sequences. The spatiotemporal multiscale transformer module learns motion-oriented action features and obtains their long-range dependencies among sub-actions at different scales. Furthermore, we design a group contrastive loss to train the model and learn more discriminative feature representations for sub-actions without explicit supervision. We exhaustively evaluate our proposed approach in the FineDiving, AQA-7, and MTL-AQA datasets. Extensive experiment results demonstrate the effectiveness and feasibility of our proposed approach, which outperforms the state-of-the-art methods by a significant margin.</description><subject>Action parsing</subject><subject>Action quality assessment</subject><subject>Decoding</subject><subject>Fine-grained representation</subject><subject>Modules</subject><subject>Multiscale transformer</subject><subject>Quality assessment</subject><subject>Representations</subject><subject>Semantics</subject><subject>Spatiotemporal phenomena</subject><subject>Sports</subject><subject>Task analysis</subject><subject>Transformers</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhoMoWKt3Dx4CXryk7ux3jqVYrRStWM9hk05KapKNuwnSf--WehCZwzuH5x2GJ4qugUwASHq_XqwmlFA2YYwBBXoSjSDlkBDC6WnYiVCJAp6eRxfe7wgBLkCOoud51WKydSbEJn7vTF_ZpMems87U8co4X7Xb-AX7b-s-49K6eFoEpI3fBlNX_T6eeo_eN9j2l9FZaWqPV785jj7mD-vZU7J8fVzMpsukoEr3iRB5GKm54UaBKqVACQQ3KFRhSsyV1ERrmWuNuTBgoCw3ggoOhiEpBbBxdHe82zn7NaDvs6byBda1adEOPqM6JUxyTlRAb_-hOzu4Nnx3oChTgvE0UORIFc5677DMOlc1xu0zINlBbhbkZge52a_cULk5VipE_IMzUJpK9gP8jXTe</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Gedamu, Kumie</creator><creator>Ji, Yanli</creator><creator>Yang, Yang</creator><creator>Shao, Jie</creator><creator>Shen, Heng Tao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5070-4511</orcidid><orcidid>https://orcid.org/0000-0003-2615-1555</orcidid><orcidid>https://orcid.org/0000-0002-6458-1882</orcidid><orcidid>https://orcid.org/0000-0001-9122-6141</orcidid><orcidid>https://orcid.org/0000-0002-2999-2088</orcidid></search><sort><creationdate>20230101</creationdate><title>Fine-grained Spatio-temporal Parsing Network for Action Quality Assessment</title><author>Gedamu, Kumie ; Ji, Yanli ; Yang, Yang ; Shao, Jie ; Shen, Heng Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-55b5b5684a4a717f65e610ede57cafeb7680886b88eb5a1a1ffd52541a3e0f513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Action parsing</topic><topic>Action quality assessment</topic><topic>Decoding</topic><topic>Fine-grained representation</topic><topic>Modules</topic><topic>Multiscale transformer</topic><topic>Quality assessment</topic><topic>Representations</topic><topic>Semantics</topic><topic>Spatiotemporal phenomena</topic><topic>Sports</topic><topic>Task analysis</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gedamu, Kumie</creatorcontrib><creatorcontrib>Ji, Yanli</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Shao, Jie</creatorcontrib><creatorcontrib>Shen, Heng Tao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gedamu, Kumie</au><au>Ji, Yanli</au><au>Yang, Yang</au><au>Shao, Jie</au><au>Shen, Heng Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fine-grained Spatio-temporal Parsing Network for Action Quality Assessment</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>32</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Action Quality Assessment (AQA) plays an important role in video analysis, which is applied to evaluate the quality of specific actions, i.e ., sports activities. However, it is still challenging because there are lots of small action discrepancies with similar backgrounds, but current approaches mostly adopt holistic video representations. So that fine-grained intra-class variations are unable to be captured. To address the aforementioned challenge, we propose a Fine-grained Spatio-temporal Parsing Network (FSPN) which is composed of the intra-sequence action parsing module and spatiotemporal multiscale transformer module to learn fine-grained spatiotemporal sub-action representations for more reliable AQA. The intra-sequence action parsing module performs semantical sub-action parsing by mining sub-actions at fine-grained levels. It enables a correct description of the subtle differences between action sequences. The spatiotemporal multiscale transformer module learns motion-oriented action features and obtains their long-range dependencies among sub-actions at different scales. Furthermore, we design a group contrastive loss to train the model and learn more discriminative feature representations for sub-actions without explicit supervision. We exhaustively evaluate our proposed approach in the FineDiving, AQA-7, and MTL-AQA datasets. Extensive experiment results demonstrate the effectiveness and feasibility of our proposed approach, which outperforms the state-of-the-art methods by a significant margin.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIP.2023.3331212</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5070-4511</orcidid><orcidid>https://orcid.org/0000-0003-2615-1555</orcidid><orcidid>https://orcid.org/0000-0002-6458-1882</orcidid><orcidid>https://orcid.org/0000-0001-9122-6141</orcidid><orcidid>https://orcid.org/0000-0002-2999-2088</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2023-01, Vol.32, p.1-1 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_journals_2892375349 |
source | IEEE Electronic Library (IEL) |
subjects | Action parsing Action quality assessment Decoding Fine-grained representation Modules Multiscale transformer Quality assessment Representations Semantics Spatiotemporal phenomena Sports Task analysis Transformers |
title | Fine-grained Spatio-temporal Parsing Network for Action Quality Assessment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A06%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fine-grained%20Spatio-temporal%20Parsing%20Network%20for%20Action%20Quality%20Assessment&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Gedamu,%20Kumie&rft.date=2023-01-01&rft.volume=32&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2023.3331212&rft_dat=%3Cproquest_RIE%3E2892375349%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892375349&rft_id=info:pmid/&rft_ieee_id=10317826&rfr_iscdi=true |