Advancing CO2 Storage Monitoring via Cross-Borehole Apparent Resistivity Imaging Simulation

Conventional resistivity inversion methodologies encounter constraints in perpetual monitoring owing to the necessity for recurrent measurements. In response, this research leverages a 3-D finite element method to formulate an approximate geometry imaging of cross-borehole resistivity during forward...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2023, Vol.61, p.1-12
Hauptverfasser: Yu, Nian, Liu, Hanghang, Feng, Xiao, Li, Tianyang, Du, Bingrui, Wang, Chenguang, Wang, Wuji, Kong, Wenxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 61
creator Yu, Nian
Liu, Hanghang
Feng, Xiao
Li, Tianyang
Du, Bingrui
Wang, Chenguang
Wang, Wuji
Kong, Wenxin
description Conventional resistivity inversion methodologies encounter constraints in perpetual monitoring owing to the necessity for recurrent measurements. In response, this research leverages a 3-D finite element method to formulate an approximate geometry imaging of cross-borehole resistivity during forward modeling, circumventing the direct computation of Jacobian matrix equations in the electric field. This study meticulously explores the complex relationship among apparent resistivity ( \rho _{a} ), carbon dioxide (CO2) resistivity ( \rho _{\text {CO2}} ), and the volume of the CO2 storage area ( V_{\mathrm {CO2}} ). Remarkably, the impact of \rho _{\mathrm {CO2}} on \rho _{a} is found to be more pronounced than that of V_{\text {CO2}} , attributed to the repulsion effect emanating from the high-resistance storage area. A robust linear correlation between \rho _{a} and V_{\text {CO2}} is identified across various multihorizontal layer models, while the relationship between \rho _{a} and \rho _{\mathrm {CO2}} adheres to a rational function. The intricate correlation between \rho _{a} and CO2 concentration is dissected, offering a quantitative perspective for inferring the resistivity of the CO2 storage area. These findings are further validated through field formation models featuring salt caverns, highlighting the effectiveness of cross-borehole resistivity imaging for CO2 storage monitoring. Beyond enhancing our understanding of subsurface geological behavior, our study underscores the feasibility of using salt caverns for CO2 storage, presenting a pioneering approach towards navigating the monitoring of subsurface CO2 storage.
doi_str_mv 10.1109/TGRS.2023.3331421
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2892365761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10313337</ieee_id><sourcerecordid>2892365761</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-82e659b7e94f997c963cdfe3db0d003749c0c2b9a0249ef1d1f7bc986d7bbc5a3</originalsourceid><addsrcrecordid>eNotkF9LwzAUxYMoOKcfQPAh4HPnzZ82zeMsOgeTwTaffChpms6MralJOti3t2M-ncPhx7ncg9AjgQkhIF82s9V6QoGyCWOMcEqu0IikaZ5Axvk1GgGRWUJzSW_RXQg7AMJTIkboe1ofVattu8XFkuJ1dF5tDf50rR3sOT5ahQvvQkhenTc_bm_wtOuUN23EKxNsiPZo4wnPD2p75tf20O9VtK69RzeN2gfz8K9j9PX-tik-ksVyNi-mi8RS4DHJqclSWQkjeSOl0DJjum4MqyuoAZjgUoOmlVRAuTQNqUkjKi3zrBZVpVPFxuj50tt599ubEMud6307nCzPH7MsFRkZqKcLZY0xZeftQflTSYCRYTHB_gA7bV8T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892365761</pqid></control><display><type>article</type><title>Advancing CO2 Storage Monitoring via Cross-Borehole Apparent Resistivity Imaging Simulation</title><source>IEEE Electronic Library (IEL)</source><creator>Yu, Nian ; Liu, Hanghang ; Feng, Xiao ; Li, Tianyang ; Du, Bingrui ; Wang, Chenguang ; Wang, Wuji ; Kong, Wenxin</creator><creatorcontrib>Yu, Nian ; Liu, Hanghang ; Feng, Xiao ; Li, Tianyang ; Du, Bingrui ; Wang, Chenguang ; Wang, Wuji ; Kong, Wenxin</creatorcontrib><description><![CDATA[Conventional resistivity inversion methodologies encounter constraints in perpetual monitoring owing to the necessity for recurrent measurements. In response, this research leverages a 3-D finite element method to formulate an approximate geometry imaging of cross-borehole resistivity during forward modeling, circumventing the direct computation of Jacobian matrix equations in the electric field. This study meticulously explores the complex relationship among apparent resistivity (<inline-formula> <tex-math notation="LaTeX">\rho _{a} </tex-math></inline-formula>), carbon dioxide (CO2) resistivity (<inline-formula> <tex-math notation="LaTeX">\rho _{\text {CO2}} </tex-math></inline-formula>), and the volume of the CO2 storage area (<inline-formula> <tex-math notation="LaTeX">V_{\mathrm {CO2}} </tex-math></inline-formula>). Remarkably, the impact of <inline-formula> <tex-math notation="LaTeX">\rho _{\mathrm {CO2}} </tex-math></inline-formula> on <inline-formula> <tex-math notation="LaTeX">\rho _{a} </tex-math></inline-formula> is found to be more pronounced than that of <inline-formula> <tex-math notation="LaTeX">V_{\text {CO2}} </tex-math></inline-formula>, attributed to the repulsion effect emanating from the high-resistance storage area. A robust linear correlation between <inline-formula> <tex-math notation="LaTeX">\rho _{a} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">V_{\text {CO2}} </tex-math></inline-formula> is identified across various multihorizontal layer models, while the relationship between <inline-formula> <tex-math notation="LaTeX">\rho _{a} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\rho _{\mathrm {CO2}} </tex-math></inline-formula> adheres to a rational function. The intricate correlation between <inline-formula> <tex-math notation="LaTeX">\rho _{a} </tex-math></inline-formula> and CO2 concentration is dissected, offering a quantitative perspective for inferring the resistivity of the CO2 storage area. These findings are further validated through field formation models featuring salt caverns, highlighting the effectiveness of cross-borehole resistivity imaging for CO2 storage monitoring. Beyond enhancing our understanding of subsurface geological behavior, our study underscores the feasibility of using salt caverns for CO2 storage, presenting a pioneering approach towards navigating the monitoring of subsurface CO2 storage.]]></description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3331421</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Apparent resistivity ; Boreholes ; Carbon dioxide ; carbon dioxide (CO2) storage ; Carbon dioxide concentration ; Carbon sequestration ; Caverns ; Computation ; Conductivity ; Correlation ; cross-borehole ; Current measurement ; Electric fields ; Electric potential ; Electrical resistivity ; Electrodes ; Feasibility studies ; Finite element method ; Imaging ; Imaging techniques ; Jacobi matrix method ; Jacobian matrix ; Mathematical models ; Monitoring ; multilayer model ; Rational functions ; salt caverns ; Storage</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023, Vol.61, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2278-702X ; 0000-0002-8497-2426 ; 0000-0003-0035-9083</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10313337$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10313337$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu, Nian</creatorcontrib><creatorcontrib>Liu, Hanghang</creatorcontrib><creatorcontrib>Feng, Xiao</creatorcontrib><creatorcontrib>Li, Tianyang</creatorcontrib><creatorcontrib>Du, Bingrui</creatorcontrib><creatorcontrib>Wang, Chenguang</creatorcontrib><creatorcontrib>Wang, Wuji</creatorcontrib><creatorcontrib>Kong, Wenxin</creatorcontrib><title>Advancing CO2 Storage Monitoring via Cross-Borehole Apparent Resistivity Imaging Simulation</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description><![CDATA[Conventional resistivity inversion methodologies encounter constraints in perpetual monitoring owing to the necessity for recurrent measurements. In response, this research leverages a 3-D finite element method to formulate an approximate geometry imaging of cross-borehole resistivity during forward modeling, circumventing the direct computation of Jacobian matrix equations in the electric field. This study meticulously explores the complex relationship among apparent resistivity (<inline-formula> <tex-math notation="LaTeX">\rho _{a} </tex-math></inline-formula>), carbon dioxide (CO2) resistivity (<inline-formula> <tex-math notation="LaTeX">\rho _{\text {CO2}} </tex-math></inline-formula>), and the volume of the CO2 storage area (<inline-formula> <tex-math notation="LaTeX">V_{\mathrm {CO2}} </tex-math></inline-formula>). Remarkably, the impact of <inline-formula> <tex-math notation="LaTeX">\rho _{\mathrm {CO2}} </tex-math></inline-formula> on <inline-formula> <tex-math notation="LaTeX">\rho _{a} </tex-math></inline-formula> is found to be more pronounced than that of <inline-formula> <tex-math notation="LaTeX">V_{\text {CO2}} </tex-math></inline-formula>, attributed to the repulsion effect emanating from the high-resistance storage area. A robust linear correlation between <inline-formula> <tex-math notation="LaTeX">\rho _{a} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">V_{\text {CO2}} </tex-math></inline-formula> is identified across various multihorizontal layer models, while the relationship between <inline-formula> <tex-math notation="LaTeX">\rho _{a} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\rho _{\mathrm {CO2}} </tex-math></inline-formula> adheres to a rational function. The intricate correlation between <inline-formula> <tex-math notation="LaTeX">\rho _{a} </tex-math></inline-formula> and CO2 concentration is dissected, offering a quantitative perspective for inferring the resistivity of the CO2 storage area. These findings are further validated through field formation models featuring salt caverns, highlighting the effectiveness of cross-borehole resistivity imaging for CO2 storage monitoring. Beyond enhancing our understanding of subsurface geological behavior, our study underscores the feasibility of using salt caverns for CO2 storage, presenting a pioneering approach towards navigating the monitoring of subsurface CO2 storage.]]></description><subject>Apparent resistivity</subject><subject>Boreholes</subject><subject>Carbon dioxide</subject><subject>carbon dioxide (CO2) storage</subject><subject>Carbon dioxide concentration</subject><subject>Carbon sequestration</subject><subject>Caverns</subject><subject>Computation</subject><subject>Conductivity</subject><subject>Correlation</subject><subject>cross-borehole</subject><subject>Current measurement</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Electrical resistivity</subject><subject>Electrodes</subject><subject>Feasibility studies</subject><subject>Finite element method</subject><subject>Imaging</subject><subject>Imaging techniques</subject><subject>Jacobi matrix method</subject><subject>Jacobian matrix</subject><subject>Mathematical models</subject><subject>Monitoring</subject><subject>multilayer model</subject><subject>Rational functions</subject><subject>salt caverns</subject><subject>Storage</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotkF9LwzAUxYMoOKcfQPAh4HPnzZ82zeMsOgeTwTaffChpms6MralJOti3t2M-ncPhx7ncg9AjgQkhIF82s9V6QoGyCWOMcEqu0IikaZ5Axvk1GgGRWUJzSW_RXQg7AMJTIkboe1ofVattu8XFkuJ1dF5tDf50rR3sOT5ahQvvQkhenTc_bm_wtOuUN23EKxNsiPZo4wnPD2p75tf20O9VtK69RzeN2gfz8K9j9PX-tik-ksVyNi-mi8RS4DHJqclSWQkjeSOl0DJjum4MqyuoAZjgUoOmlVRAuTQNqUkjKi3zrBZVpVPFxuj50tt599ubEMud6307nCzPH7MsFRkZqKcLZY0xZeftQflTSYCRYTHB_gA7bV8T</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Yu, Nian</creator><creator>Liu, Hanghang</creator><creator>Feng, Xiao</creator><creator>Li, Tianyang</creator><creator>Du, Bingrui</creator><creator>Wang, Chenguang</creator><creator>Wang, Wuji</creator><creator>Kong, Wenxin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2278-702X</orcidid><orcidid>https://orcid.org/0000-0002-8497-2426</orcidid><orcidid>https://orcid.org/0000-0003-0035-9083</orcidid></search><sort><creationdate>2023</creationdate><title>Advancing CO2 Storage Monitoring via Cross-Borehole Apparent Resistivity Imaging Simulation</title><author>Yu, Nian ; Liu, Hanghang ; Feng, Xiao ; Li, Tianyang ; Du, Bingrui ; Wang, Chenguang ; Wang, Wuji ; Kong, Wenxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-82e659b7e94f997c963cdfe3db0d003749c0c2b9a0249ef1d1f7bc986d7bbc5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Apparent resistivity</topic><topic>Boreholes</topic><topic>Carbon dioxide</topic><topic>carbon dioxide (CO2) storage</topic><topic>Carbon dioxide concentration</topic><topic>Carbon sequestration</topic><topic>Caverns</topic><topic>Computation</topic><topic>Conductivity</topic><topic>Correlation</topic><topic>cross-borehole</topic><topic>Current measurement</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Electrical resistivity</topic><topic>Electrodes</topic><topic>Feasibility studies</topic><topic>Finite element method</topic><topic>Imaging</topic><topic>Imaging techniques</topic><topic>Jacobi matrix method</topic><topic>Jacobian matrix</topic><topic>Mathematical models</topic><topic>Monitoring</topic><topic>multilayer model</topic><topic>Rational functions</topic><topic>salt caverns</topic><topic>Storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Nian</creatorcontrib><creatorcontrib>Liu, Hanghang</creatorcontrib><creatorcontrib>Feng, Xiao</creatorcontrib><creatorcontrib>Li, Tianyang</creatorcontrib><creatorcontrib>Du, Bingrui</creatorcontrib><creatorcontrib>Wang, Chenguang</creatorcontrib><creatorcontrib>Wang, Wuji</creatorcontrib><creatorcontrib>Kong, Wenxin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu, Nian</au><au>Liu, Hanghang</au><au>Feng, Xiao</au><au>Li, Tianyang</au><au>Du, Bingrui</au><au>Wang, Chenguang</au><au>Wang, Wuji</au><au>Kong, Wenxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancing CO2 Storage Monitoring via Cross-Borehole Apparent Resistivity Imaging Simulation</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract><![CDATA[Conventional resistivity inversion methodologies encounter constraints in perpetual monitoring owing to the necessity for recurrent measurements. In response, this research leverages a 3-D finite element method to formulate an approximate geometry imaging of cross-borehole resistivity during forward modeling, circumventing the direct computation of Jacobian matrix equations in the electric field. This study meticulously explores the complex relationship among apparent resistivity (<inline-formula> <tex-math notation="LaTeX">\rho _{a} </tex-math></inline-formula>), carbon dioxide (CO2) resistivity (<inline-formula> <tex-math notation="LaTeX">\rho _{\text {CO2}} </tex-math></inline-formula>), and the volume of the CO2 storage area (<inline-formula> <tex-math notation="LaTeX">V_{\mathrm {CO2}} </tex-math></inline-formula>). Remarkably, the impact of <inline-formula> <tex-math notation="LaTeX">\rho _{\mathrm {CO2}} </tex-math></inline-formula> on <inline-formula> <tex-math notation="LaTeX">\rho _{a} </tex-math></inline-formula> is found to be more pronounced than that of <inline-formula> <tex-math notation="LaTeX">V_{\text {CO2}} </tex-math></inline-formula>, attributed to the repulsion effect emanating from the high-resistance storage area. A robust linear correlation between <inline-formula> <tex-math notation="LaTeX">\rho _{a} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">V_{\text {CO2}} </tex-math></inline-formula> is identified across various multihorizontal layer models, while the relationship between <inline-formula> <tex-math notation="LaTeX">\rho _{a} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\rho _{\mathrm {CO2}} </tex-math></inline-formula> adheres to a rational function. The intricate correlation between <inline-formula> <tex-math notation="LaTeX">\rho _{a} </tex-math></inline-formula> and CO2 concentration is dissected, offering a quantitative perspective for inferring the resistivity of the CO2 storage area. These findings are further validated through field formation models featuring salt caverns, highlighting the effectiveness of cross-borehole resistivity imaging for CO2 storage monitoring. Beyond enhancing our understanding of subsurface geological behavior, our study underscores the feasibility of using salt caverns for CO2 storage, presenting a pioneering approach towards navigating the monitoring of subsurface CO2 storage.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3331421</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2278-702X</orcidid><orcidid>https://orcid.org/0000-0002-8497-2426</orcidid><orcidid>https://orcid.org/0000-0003-0035-9083</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2023, Vol.61, p.1-12
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_2892365761
source IEEE Electronic Library (IEL)
subjects Apparent resistivity
Boreholes
Carbon dioxide
carbon dioxide (CO2) storage
Carbon dioxide concentration
Carbon sequestration
Caverns
Computation
Conductivity
Correlation
cross-borehole
Current measurement
Electric fields
Electric potential
Electrical resistivity
Electrodes
Feasibility studies
Finite element method
Imaging
Imaging techniques
Jacobi matrix method
Jacobian matrix
Mathematical models
Monitoring
multilayer model
Rational functions
salt caverns
Storage
title Advancing CO2 Storage Monitoring via Cross-Borehole Apparent Resistivity Imaging Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A46%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancing%20CO2%20Storage%20Monitoring%20via%20Cross-Borehole%20Apparent%20Resistivity%20Imaging%20Simulation&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Yu,%20Nian&rft.date=2023&rft.volume=61&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3331421&rft_dat=%3Cproquest_RIE%3E2892365761%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892365761&rft_id=info:pmid/&rft_ieee_id=10313337&rfr_iscdi=true