Advancing CO2 Storage Monitoring via Cross-Borehole Apparent Resistivity Imaging Simulation
Conventional resistivity inversion methodologies encounter constraints in perpetual monitoring owing to the necessity for recurrent measurements. In response, this research leverages a 3-D finite element method to formulate an approximate geometry imaging of cross-borehole resistivity during forward...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2023, Vol.61, p.1-12 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 61 |
creator | Yu, Nian Liu, Hanghang Feng, Xiao Li, Tianyang Du, Bingrui Wang, Chenguang Wang, Wuji Kong, Wenxin |
description | Conventional resistivity inversion methodologies encounter constraints in perpetual monitoring owing to the necessity for recurrent measurements. In response, this research leverages a 3-D finite element method to formulate an approximate geometry imaging of cross-borehole resistivity during forward modeling, circumventing the direct computation of Jacobian matrix equations in the electric field. This study meticulously explores the complex relationship among apparent resistivity ( \rho _{a} ), carbon dioxide (CO2) resistivity ( \rho _{\text {CO2}} ), and the volume of the CO2 storage area ( V_{\mathrm {CO2}} ). Remarkably, the impact of \rho _{\mathrm {CO2}} on \rho _{a} is found to be more pronounced than that of V_{\text {CO2}} , attributed to the repulsion effect emanating from the high-resistance storage area. A robust linear correlation between \rho _{a} and V_{\text {CO2}} is identified across various multihorizontal layer models, while the relationship between \rho _{a} and \rho _{\mathrm {CO2}} adheres to a rational function. The intricate correlation between \rho _{a} and CO2 concentration is dissected, offering a quantitative perspective for inferring the resistivity of the CO2 storage area. These findings are further validated through field formation models featuring salt caverns, highlighting the effectiveness of cross-borehole resistivity imaging for CO2 storage monitoring. Beyond enhancing our understanding of subsurface geological behavior, our study underscores the feasibility of using salt caverns for CO2 storage, presenting a pioneering approach towards navigating the monitoring of subsurface CO2 storage. |
doi_str_mv | 10.1109/TGRS.2023.3331421 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2892365761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10313337</ieee_id><sourcerecordid>2892365761</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-82e659b7e94f997c963cdfe3db0d003749c0c2b9a0249ef1d1f7bc986d7bbc5a3</originalsourceid><addsrcrecordid>eNotkF9LwzAUxYMoOKcfQPAh4HPnzZ82zeMsOgeTwTaffChpms6MralJOti3t2M-ncPhx7ncg9AjgQkhIF82s9V6QoGyCWOMcEqu0IikaZ5Axvk1GgGRWUJzSW_RXQg7AMJTIkboe1ofVattu8XFkuJ1dF5tDf50rR3sOT5ahQvvQkhenTc_bm_wtOuUN23EKxNsiPZo4wnPD2p75tf20O9VtK69RzeN2gfz8K9j9PX-tik-ksVyNi-mi8RS4DHJqclSWQkjeSOl0DJjum4MqyuoAZjgUoOmlVRAuTQNqUkjKi3zrBZVpVPFxuj50tt599ubEMud6307nCzPH7MsFRkZqKcLZY0xZeftQflTSYCRYTHB_gA7bV8T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892365761</pqid></control><display><type>article</type><title>Advancing CO2 Storage Monitoring via Cross-Borehole Apparent Resistivity Imaging Simulation</title><source>IEEE Electronic Library (IEL)</source><creator>Yu, Nian ; Liu, Hanghang ; Feng, Xiao ; Li, Tianyang ; Du, Bingrui ; Wang, Chenguang ; Wang, Wuji ; Kong, Wenxin</creator><creatorcontrib>Yu, Nian ; Liu, Hanghang ; Feng, Xiao ; Li, Tianyang ; Du, Bingrui ; Wang, Chenguang ; Wang, Wuji ; Kong, Wenxin</creatorcontrib><description><![CDATA[Conventional resistivity inversion methodologies encounter constraints in perpetual monitoring owing to the necessity for recurrent measurements. In response, this research leverages a 3-D finite element method to formulate an approximate geometry imaging of cross-borehole resistivity during forward modeling, circumventing the direct computation of Jacobian matrix equations in the electric field. This study meticulously explores the complex relationship among apparent resistivity (<inline-formula> <tex-math notation="LaTeX">\rho _{a} </tex-math></inline-formula>), carbon dioxide (CO2) resistivity (<inline-formula> <tex-math notation="LaTeX">\rho _{\text {CO2}} </tex-math></inline-formula>), and the volume of the CO2 storage area (<inline-formula> <tex-math notation="LaTeX">V_{\mathrm {CO2}} </tex-math></inline-formula>). Remarkably, the impact of <inline-formula> <tex-math notation="LaTeX">\rho _{\mathrm {CO2}} </tex-math></inline-formula> on <inline-formula> <tex-math notation="LaTeX">\rho _{a} </tex-math></inline-formula> is found to be more pronounced than that of <inline-formula> <tex-math notation="LaTeX">V_{\text {CO2}} </tex-math></inline-formula>, attributed to the repulsion effect emanating from the high-resistance storage area. A robust linear correlation between <inline-formula> <tex-math notation="LaTeX">\rho _{a} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">V_{\text {CO2}} </tex-math></inline-formula> is identified across various multihorizontal layer models, while the relationship between <inline-formula> <tex-math notation="LaTeX">\rho _{a} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\rho _{\mathrm {CO2}} </tex-math></inline-formula> adheres to a rational function. The intricate correlation between <inline-formula> <tex-math notation="LaTeX">\rho _{a} </tex-math></inline-formula> and CO2 concentration is dissected, offering a quantitative perspective for inferring the resistivity of the CO2 storage area. These findings are further validated through field formation models featuring salt caverns, highlighting the effectiveness of cross-borehole resistivity imaging for CO2 storage monitoring. Beyond enhancing our understanding of subsurface geological behavior, our study underscores the feasibility of using salt caverns for CO2 storage, presenting a pioneering approach towards navigating the monitoring of subsurface CO2 storage.]]></description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3331421</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Apparent resistivity ; Boreholes ; Carbon dioxide ; carbon dioxide (CO2) storage ; Carbon dioxide concentration ; Carbon sequestration ; Caverns ; Computation ; Conductivity ; Correlation ; cross-borehole ; Current measurement ; Electric fields ; Electric potential ; Electrical resistivity ; Electrodes ; Feasibility studies ; Finite element method ; Imaging ; Imaging techniques ; Jacobi matrix method ; Jacobian matrix ; Mathematical models ; Monitoring ; multilayer model ; Rational functions ; salt caverns ; Storage</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023, Vol.61, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2278-702X ; 0000-0002-8497-2426 ; 0000-0003-0035-9083</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10313337$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10313337$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu, Nian</creatorcontrib><creatorcontrib>Liu, Hanghang</creatorcontrib><creatorcontrib>Feng, Xiao</creatorcontrib><creatorcontrib>Li, Tianyang</creatorcontrib><creatorcontrib>Du, Bingrui</creatorcontrib><creatorcontrib>Wang, Chenguang</creatorcontrib><creatorcontrib>Wang, Wuji</creatorcontrib><creatorcontrib>Kong, Wenxin</creatorcontrib><title>Advancing CO2 Storage Monitoring via Cross-Borehole Apparent Resistivity Imaging Simulation</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description><![CDATA[Conventional resistivity inversion methodologies encounter constraints in perpetual monitoring owing to the necessity for recurrent measurements. In response, this research leverages a 3-D finite element method to formulate an approximate geometry imaging of cross-borehole resistivity during forward modeling, circumventing the direct computation of Jacobian matrix equations in the electric field. This study meticulously explores the complex relationship among apparent resistivity (<inline-formula> <tex-math notation="LaTeX">\rho _{a} </tex-math></inline-formula>), carbon dioxide (CO2) resistivity (<inline-formula> <tex-math notation="LaTeX">\rho _{\text {CO2}} </tex-math></inline-formula>), and the volume of the CO2 storage area (<inline-formula> <tex-math notation="LaTeX">V_{\mathrm {CO2}} </tex-math></inline-formula>). Remarkably, the impact of <inline-formula> <tex-math notation="LaTeX">\rho _{\mathrm {CO2}} </tex-math></inline-formula> on <inline-formula> <tex-math notation="LaTeX">\rho _{a} </tex-math></inline-formula> is found to be more pronounced than that of <inline-formula> <tex-math notation="LaTeX">V_{\text {CO2}} </tex-math></inline-formula>, attributed to the repulsion effect emanating from the high-resistance storage area. A robust linear correlation between <inline-formula> <tex-math notation="LaTeX">\rho _{a} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">V_{\text {CO2}} </tex-math></inline-formula> is identified across various multihorizontal layer models, while the relationship between <inline-formula> <tex-math notation="LaTeX">\rho _{a} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\rho _{\mathrm {CO2}} </tex-math></inline-formula> adheres to a rational function. The intricate correlation between <inline-formula> <tex-math notation="LaTeX">\rho _{a} </tex-math></inline-formula> and CO2 concentration is dissected, offering a quantitative perspective for inferring the resistivity of the CO2 storage area. These findings are further validated through field formation models featuring salt caverns, highlighting the effectiveness of cross-borehole resistivity imaging for CO2 storage monitoring. Beyond enhancing our understanding of subsurface geological behavior, our study underscores the feasibility of using salt caverns for CO2 storage, presenting a pioneering approach towards navigating the monitoring of subsurface CO2 storage.]]></description><subject>Apparent resistivity</subject><subject>Boreholes</subject><subject>Carbon dioxide</subject><subject>carbon dioxide (CO2) storage</subject><subject>Carbon dioxide concentration</subject><subject>Carbon sequestration</subject><subject>Caverns</subject><subject>Computation</subject><subject>Conductivity</subject><subject>Correlation</subject><subject>cross-borehole</subject><subject>Current measurement</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Electrical resistivity</subject><subject>Electrodes</subject><subject>Feasibility studies</subject><subject>Finite element method</subject><subject>Imaging</subject><subject>Imaging techniques</subject><subject>Jacobi matrix method</subject><subject>Jacobian matrix</subject><subject>Mathematical models</subject><subject>Monitoring</subject><subject>multilayer model</subject><subject>Rational functions</subject><subject>salt caverns</subject><subject>Storage</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotkF9LwzAUxYMoOKcfQPAh4HPnzZ82zeMsOgeTwTaffChpms6MralJOti3t2M-ncPhx7ncg9AjgQkhIF82s9V6QoGyCWOMcEqu0IikaZ5Axvk1GgGRWUJzSW_RXQg7AMJTIkboe1ofVattu8XFkuJ1dF5tDf50rR3sOT5ahQvvQkhenTc_bm_wtOuUN23EKxNsiPZo4wnPD2p75tf20O9VtK69RzeN2gfz8K9j9PX-tik-ksVyNi-mi8RS4DHJqclSWQkjeSOl0DJjum4MqyuoAZjgUoOmlVRAuTQNqUkjKi3zrBZVpVPFxuj50tt599ubEMud6307nCzPH7MsFRkZqKcLZY0xZeftQflTSYCRYTHB_gA7bV8T</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Yu, Nian</creator><creator>Liu, Hanghang</creator><creator>Feng, Xiao</creator><creator>Li, Tianyang</creator><creator>Du, Bingrui</creator><creator>Wang, Chenguang</creator><creator>Wang, Wuji</creator><creator>Kong, Wenxin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2278-702X</orcidid><orcidid>https://orcid.org/0000-0002-8497-2426</orcidid><orcidid>https://orcid.org/0000-0003-0035-9083</orcidid></search><sort><creationdate>2023</creationdate><title>Advancing CO2 Storage Monitoring via Cross-Borehole Apparent Resistivity Imaging Simulation</title><author>Yu, Nian ; Liu, Hanghang ; Feng, Xiao ; Li, Tianyang ; Du, Bingrui ; Wang, Chenguang ; Wang, Wuji ; Kong, Wenxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-82e659b7e94f997c963cdfe3db0d003749c0c2b9a0249ef1d1f7bc986d7bbc5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Apparent resistivity</topic><topic>Boreholes</topic><topic>Carbon dioxide</topic><topic>carbon dioxide (CO2) storage</topic><topic>Carbon dioxide concentration</topic><topic>Carbon sequestration</topic><topic>Caverns</topic><topic>Computation</topic><topic>Conductivity</topic><topic>Correlation</topic><topic>cross-borehole</topic><topic>Current measurement</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Electrical resistivity</topic><topic>Electrodes</topic><topic>Feasibility studies</topic><topic>Finite element method</topic><topic>Imaging</topic><topic>Imaging techniques</topic><topic>Jacobi matrix method</topic><topic>Jacobian matrix</topic><topic>Mathematical models</topic><topic>Monitoring</topic><topic>multilayer model</topic><topic>Rational functions</topic><topic>salt caverns</topic><topic>Storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Nian</creatorcontrib><creatorcontrib>Liu, Hanghang</creatorcontrib><creatorcontrib>Feng, Xiao</creatorcontrib><creatorcontrib>Li, Tianyang</creatorcontrib><creatorcontrib>Du, Bingrui</creatorcontrib><creatorcontrib>Wang, Chenguang</creatorcontrib><creatorcontrib>Wang, Wuji</creatorcontrib><creatorcontrib>Kong, Wenxin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu, Nian</au><au>Liu, Hanghang</au><au>Feng, Xiao</au><au>Li, Tianyang</au><au>Du, Bingrui</au><au>Wang, Chenguang</au><au>Wang, Wuji</au><au>Kong, Wenxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancing CO2 Storage Monitoring via Cross-Borehole Apparent Resistivity Imaging Simulation</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract><![CDATA[Conventional resistivity inversion methodologies encounter constraints in perpetual monitoring owing to the necessity for recurrent measurements. In response, this research leverages a 3-D finite element method to formulate an approximate geometry imaging of cross-borehole resistivity during forward modeling, circumventing the direct computation of Jacobian matrix equations in the electric field. This study meticulously explores the complex relationship among apparent resistivity (<inline-formula> <tex-math notation="LaTeX">\rho _{a} </tex-math></inline-formula>), carbon dioxide (CO2) resistivity (<inline-formula> <tex-math notation="LaTeX">\rho _{\text {CO2}} </tex-math></inline-formula>), and the volume of the CO2 storage area (<inline-formula> <tex-math notation="LaTeX">V_{\mathrm {CO2}} </tex-math></inline-formula>). Remarkably, the impact of <inline-formula> <tex-math notation="LaTeX">\rho _{\mathrm {CO2}} </tex-math></inline-formula> on <inline-formula> <tex-math notation="LaTeX">\rho _{a} </tex-math></inline-formula> is found to be more pronounced than that of <inline-formula> <tex-math notation="LaTeX">V_{\text {CO2}} </tex-math></inline-formula>, attributed to the repulsion effect emanating from the high-resistance storage area. A robust linear correlation between <inline-formula> <tex-math notation="LaTeX">\rho _{a} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">V_{\text {CO2}} </tex-math></inline-formula> is identified across various multihorizontal layer models, while the relationship between <inline-formula> <tex-math notation="LaTeX">\rho _{a} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\rho _{\mathrm {CO2}} </tex-math></inline-formula> adheres to a rational function. The intricate correlation between <inline-formula> <tex-math notation="LaTeX">\rho _{a} </tex-math></inline-formula> and CO2 concentration is dissected, offering a quantitative perspective for inferring the resistivity of the CO2 storage area. These findings are further validated through field formation models featuring salt caverns, highlighting the effectiveness of cross-borehole resistivity imaging for CO2 storage monitoring. Beyond enhancing our understanding of subsurface geological behavior, our study underscores the feasibility of using salt caverns for CO2 storage, presenting a pioneering approach towards navigating the monitoring of subsurface CO2 storage.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3331421</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2278-702X</orcidid><orcidid>https://orcid.org/0000-0002-8497-2426</orcidid><orcidid>https://orcid.org/0000-0003-0035-9083</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2023, Vol.61, p.1-12 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_2892365761 |
source | IEEE Electronic Library (IEL) |
subjects | Apparent resistivity Boreholes Carbon dioxide carbon dioxide (CO2) storage Carbon dioxide concentration Carbon sequestration Caverns Computation Conductivity Correlation cross-borehole Current measurement Electric fields Electric potential Electrical resistivity Electrodes Feasibility studies Finite element method Imaging Imaging techniques Jacobi matrix method Jacobian matrix Mathematical models Monitoring multilayer model Rational functions salt caverns Storage |
title | Advancing CO2 Storage Monitoring via Cross-Borehole Apparent Resistivity Imaging Simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A46%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancing%20CO2%20Storage%20Monitoring%20via%20Cross-Borehole%20Apparent%20Resistivity%20Imaging%20Simulation&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Yu,%20Nian&rft.date=2023&rft.volume=61&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3331421&rft_dat=%3Cproquest_RIE%3E2892365761%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892365761&rft_id=info:pmid/&rft_ieee_id=10313337&rfr_iscdi=true |