From Lozi map to fractional memristive Lozi map
The Lozi map is well-known and has been studied in various researches. By combining three research trends (discrete map, memristor and fractional calculus) we investigate a fractional memristive Lozi map in this work. Firstly the Grunwald–Letnikov fractional difference operator is used to introduce...
Gespeichert in:
Veröffentlicht in: | The European physical journal. ST, Special topics Special topics, 2023-11, Vol.232 (14-15), p.2385-2393 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2393 |
---|---|
container_issue | 14-15 |
container_start_page | 2385 |
container_title | The European physical journal. ST, Special topics |
container_volume | 232 |
creator | Khennaoui, Amina Aicha Pham, Viet-Thanh Thoai, Vo Phu Ouannas, Adel Grassi, Giuseppe Momani, Shaher |
description | The Lozi map is well-known and has been studied in various researches. By combining three research trends (discrete map, memristor and fractional calculus) we investigate a fractional memristive Lozi map in this work. Firstly the Grunwald–Letnikov fractional difference operator is used to introduce the new fractional map with no equilibrium point. Then, the coexistence of several chaotic hidden attractors is shown, along with the coexistence of a number of bifurcations, depending on the values of the initial conditions. We found attractive dynamics and characteristics of this fractional Lozi map. The realization with hardware platform illustrates the map’s feasibility. |
doi_str_mv | 10.1140/epjs/s11734-023-00911-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2892307675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892307675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-83d4923f287e904878c05c5683836f3ac20ca2c188bf122e98b53c4e2e70e0323</originalsourceid><addsrcrecordid>eNqFkE1LAzEURYMoWKu_wQHXse_lJZPMUoq1QsGNrkMaMzKl04zJVNBf79TxY-nq3cU9l8dh7BLhGlHCLHSbPMuImiQHQRygQuTmiE2wUshLCXj8k0mpU3aW8wZAlaKiCZstUmyLVfxoitZ1RR-LOjnfN3HntkUb2tTkvnkLv41zdlK7bQ4X33fKnha3j_MlXz3c3c9vVtwTyZ4bepaVoFoYHSqQRhsPyqvSkKGyJucFeCc8GrOuUYhQmbUiL4MIGgKQoCm7Gne7FF_3Ifd2E_dpeCpbYYZl0KVWQ0uPLZ9izinUtktN69K7RbAHO_Zgx4527GDHftmxZiDNSOaB2L2E9Lf_H_oJVSBpYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892307675</pqid></control><display><type>article</type><title>From Lozi map to fractional memristive Lozi map</title><source>SpringerNature Journals</source><creator>Khennaoui, Amina Aicha ; Pham, Viet-Thanh ; Thoai, Vo Phu ; Ouannas, Adel ; Grassi, Giuseppe ; Momani, Shaher</creator><creatorcontrib>Khennaoui, Amina Aicha ; Pham, Viet-Thanh ; Thoai, Vo Phu ; Ouannas, Adel ; Grassi, Giuseppe ; Momani, Shaher</creatorcontrib><description>The Lozi map is well-known and has been studied in various researches. By combining three research trends (discrete map, memristor and fractional calculus) we investigate a fractional memristive Lozi map in this work. Firstly the Grunwald–Letnikov fractional difference operator is used to introduce the new fractional map with no equilibrium point. Then, the coexistence of several chaotic hidden attractors is shown, along with the coexistence of a number of bifurcations, depending on the values of the initial conditions. We found attractive dynamics and characteristics of this fractional Lozi map. The realization with hardware platform illustrates the map’s feasibility.</description><identifier>ISSN: 1951-6355</identifier><identifier>EISSN: 1951-6401</identifier><identifier>DOI: 10.1140/epjs/s11734-023-00911-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Atomic ; Attractors (mathematics) ; Bifurcations ; Classical and Continuum Physics ; Condensed Matter Physics ; Finite differences ; Fractional calculus ; Initial conditions ; Materials Science ; Measurement Science and Instrumentation ; Molecular ; Operators (mathematics) ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Recent Advancement of Fractional-Calculus and Its Applications in Physical Systems ; Regular Article</subject><ispartof>The European physical journal. ST, Special topics, 2023-11, Vol.232 (14-15), p.2385-2393</ispartof><rights>The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-83d4923f287e904878c05c5683836f3ac20ca2c188bf122e98b53c4e2e70e0323</citedby><cites>FETCH-LOGICAL-c334t-83d4923f287e904878c05c5683836f3ac20ca2c188bf122e98b53c4e2e70e0323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjs/s11734-023-00911-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjs/s11734-023-00911-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Khennaoui, Amina Aicha</creatorcontrib><creatorcontrib>Pham, Viet-Thanh</creatorcontrib><creatorcontrib>Thoai, Vo Phu</creatorcontrib><creatorcontrib>Ouannas, Adel</creatorcontrib><creatorcontrib>Grassi, Giuseppe</creatorcontrib><creatorcontrib>Momani, Shaher</creatorcontrib><title>From Lozi map to fractional memristive Lozi map</title><title>The European physical journal. ST, Special topics</title><addtitle>Eur. Phys. J. Spec. Top</addtitle><description>The Lozi map is well-known and has been studied in various researches. By combining three research trends (discrete map, memristor and fractional calculus) we investigate a fractional memristive Lozi map in this work. Firstly the Grunwald–Letnikov fractional difference operator is used to introduce the new fractional map with no equilibrium point. Then, the coexistence of several chaotic hidden attractors is shown, along with the coexistence of a number of bifurcations, depending on the values of the initial conditions. We found attractive dynamics and characteristics of this fractional Lozi map. The realization with hardware platform illustrates the map’s feasibility.</description><subject>Atomic</subject><subject>Attractors (mathematics)</subject><subject>Bifurcations</subject><subject>Classical and Continuum Physics</subject><subject>Condensed Matter Physics</subject><subject>Finite differences</subject><subject>Fractional calculus</subject><subject>Initial conditions</subject><subject>Materials Science</subject><subject>Measurement Science and Instrumentation</subject><subject>Molecular</subject><subject>Operators (mathematics)</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Recent Advancement of Fractional-Calculus and Its Applications in Physical Systems</subject><subject>Regular Article</subject><issn>1951-6355</issn><issn>1951-6401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEURYMoWKu_wQHXse_lJZPMUoq1QsGNrkMaMzKl04zJVNBf79TxY-nq3cU9l8dh7BLhGlHCLHSbPMuImiQHQRygQuTmiE2wUshLCXj8k0mpU3aW8wZAlaKiCZstUmyLVfxoitZ1RR-LOjnfN3HntkUb2tTkvnkLv41zdlK7bQ4X33fKnha3j_MlXz3c3c9vVtwTyZ4bepaVoFoYHSqQRhsPyqvSkKGyJucFeCc8GrOuUYhQmbUiL4MIGgKQoCm7Gne7FF_3Ifd2E_dpeCpbYYZl0KVWQ0uPLZ9izinUtktN69K7RbAHO_Zgx4527GDHftmxZiDNSOaB2L2E9Lf_H_oJVSBpYw</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Khennaoui, Amina Aicha</creator><creator>Pham, Viet-Thanh</creator><creator>Thoai, Vo Phu</creator><creator>Ouannas, Adel</creator><creator>Grassi, Giuseppe</creator><creator>Momani, Shaher</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231101</creationdate><title>From Lozi map to fractional memristive Lozi map</title><author>Khennaoui, Amina Aicha ; Pham, Viet-Thanh ; Thoai, Vo Phu ; Ouannas, Adel ; Grassi, Giuseppe ; Momani, Shaher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-83d4923f287e904878c05c5683836f3ac20ca2c188bf122e98b53c4e2e70e0323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atomic</topic><topic>Attractors (mathematics)</topic><topic>Bifurcations</topic><topic>Classical and Continuum Physics</topic><topic>Condensed Matter Physics</topic><topic>Finite differences</topic><topic>Fractional calculus</topic><topic>Initial conditions</topic><topic>Materials Science</topic><topic>Measurement Science and Instrumentation</topic><topic>Molecular</topic><topic>Operators (mathematics)</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Recent Advancement of Fractional-Calculus and Its Applications in Physical Systems</topic><topic>Regular Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khennaoui, Amina Aicha</creatorcontrib><creatorcontrib>Pham, Viet-Thanh</creatorcontrib><creatorcontrib>Thoai, Vo Phu</creatorcontrib><creatorcontrib>Ouannas, Adel</creatorcontrib><creatorcontrib>Grassi, Giuseppe</creatorcontrib><creatorcontrib>Momani, Shaher</creatorcontrib><collection>CrossRef</collection><jtitle>The European physical journal. ST, Special topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khennaoui, Amina Aicha</au><au>Pham, Viet-Thanh</au><au>Thoai, Vo Phu</au><au>Ouannas, Adel</au><au>Grassi, Giuseppe</au><au>Momani, Shaher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From Lozi map to fractional memristive Lozi map</atitle><jtitle>The European physical journal. ST, Special topics</jtitle><stitle>Eur. Phys. J. Spec. Top</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>232</volume><issue>14-15</issue><spage>2385</spage><epage>2393</epage><pages>2385-2393</pages><issn>1951-6355</issn><eissn>1951-6401</eissn><abstract>The Lozi map is well-known and has been studied in various researches. By combining three research trends (discrete map, memristor and fractional calculus) we investigate a fractional memristive Lozi map in this work. Firstly the Grunwald–Letnikov fractional difference operator is used to introduce the new fractional map with no equilibrium point. Then, the coexistence of several chaotic hidden attractors is shown, along with the coexistence of a number of bifurcations, depending on the values of the initial conditions. We found attractive dynamics and characteristics of this fractional Lozi map. The realization with hardware platform illustrates the map’s feasibility.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjs/s11734-023-00911-8</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1951-6355 |
ispartof | The European physical journal. ST, Special topics, 2023-11, Vol.232 (14-15), p.2385-2393 |
issn | 1951-6355 1951-6401 |
language | eng |
recordid | cdi_proquest_journals_2892307675 |
source | SpringerNature Journals |
subjects | Atomic Attractors (mathematics) Bifurcations Classical and Continuum Physics Condensed Matter Physics Finite differences Fractional calculus Initial conditions Materials Science Measurement Science and Instrumentation Molecular Operators (mathematics) Optical and Plasma Physics Physics Physics and Astronomy Recent Advancement of Fractional-Calculus and Its Applications in Physical Systems Regular Article |
title | From Lozi map to fractional memristive Lozi map |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A17%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20Lozi%20map%20to%20fractional%20memristive%20Lozi%20map&rft.jtitle=The%20European%20physical%20journal.%20ST,%20Special%20topics&rft.au=Khennaoui,%20Amina%20Aicha&rft.date=2023-11-01&rft.volume=232&rft.issue=14-15&rft.spage=2385&rft.epage=2393&rft.pages=2385-2393&rft.issn=1951-6355&rft.eissn=1951-6401&rft_id=info:doi/10.1140/epjs/s11734-023-00911-8&rft_dat=%3Cproquest_cross%3E2892307675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892307675&rft_id=info:pmid/&rfr_iscdi=true |