The new Krylov subspace methods for solving tensor equations via T-product

In this paper, we present two new subspace methods for solving some linear tensor equations. Using the well-known tensor T -product, we define two new methods T -block Arnoldi and T -extended block Arnoldi processes. We present numerical examples to support the theoretical results, which show that t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational & applied mathematics 2023-12, Vol.42 (8), Article 358
Hauptverfasser: Nobakht-Kooshkghazi, Malihe, Afshin, Hamidreza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Computational & applied mathematics
container_volume 42
creator Nobakht-Kooshkghazi, Malihe
Afshin, Hamidreza
description In this paper, we present two new subspace methods for solving some linear tensor equations. Using the well-known tensor T -product, we define two new methods T -block Arnoldi and T -extended block Arnoldi processes. We present numerical examples to support the theoretical results, which show that these algorithms are practical and effective for solving some tensor equations.
doi_str_mv 10.1007/s40314-023-02487-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2892307365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892307365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-cd02b3f7acdb5aa2139c99648809816d81a0bf38abd14d8104e4be7cefc32f313</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgOnqSk04ySyneC27qOmQymXZKO2mTmUrf3mgFdy4Ohx_-C3yEXHO45QDqLklALhkIzCe1YvKEjLgGxQBBnJKREKgZFoDn5CKlFQAqLuWIvM6Xnnb-k77FwzrsaRqqtLXO043vl6FOtAmRprDet92C9r5LWfrdYPs2dInuW0vnbBtDPbj-kpw1dp381e8fk4_Hh_n0mc3en16m9zPmhIKeuRpEhY2yrq4m1gqOpSvLQmoNpeZFrbmFqkFtq5rLrEB6WXnlfONQNMhxTG6OvXl3N_jUm1UYYpcnjdClQFBYTLJLHF0uhpSib8w2thsbD4aD-WZmjsxMZmZ-mBmZQ3gMpWzuFj7-Vf-T-gJe4G9N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892307365</pqid></control><display><type>article</type><title>The new Krylov subspace methods for solving tensor equations via T-product</title><source>SpringerNature Journals</source><creator>Nobakht-Kooshkghazi, Malihe ; Afshin, Hamidreza</creator><creatorcontrib>Nobakht-Kooshkghazi, Malihe ; Afshin, Hamidreza</creatorcontrib><description>In this paper, we present two new subspace methods for solving some linear tensor equations. Using the well-known tensor T -product, we define two new methods T -block Arnoldi and T -extended block Arnoldi processes. We present numerical examples to support the theoretical results, which show that these algorithms are practical and effective for solving some tensor equations.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-023-02487-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Applications of Mathematics ; Computational Mathematics and Numerical Analysis ; Mathematical analysis ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Subspace methods ; Tensors</subject><ispartof>Computational &amp; applied mathematics, 2023-12, Vol.42 (8), Article 358</ispartof><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-cd02b3f7acdb5aa2139c99648809816d81a0bf38abd14d8104e4be7cefc32f313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40314-023-02487-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40314-023-02487-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Nobakht-Kooshkghazi, Malihe</creatorcontrib><creatorcontrib>Afshin, Hamidreza</creatorcontrib><title>The new Krylov subspace methods for solving tensor equations via T-product</title><title>Computational &amp; applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>In this paper, we present two new subspace methods for solving some linear tensor equations. Using the well-known tensor T -product, we define two new methods T -block Arnoldi and T -extended block Arnoldi processes. We present numerical examples to support the theoretical results, which show that these algorithms are practical and effective for solving some tensor equations.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Subspace methods</subject><subject>Tensors</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4CrgOnqSk04ySyneC27qOmQymXZKO2mTmUrf3mgFdy4Ohx_-C3yEXHO45QDqLklALhkIzCe1YvKEjLgGxQBBnJKREKgZFoDn5CKlFQAqLuWIvM6Xnnb-k77FwzrsaRqqtLXO043vl6FOtAmRprDet92C9r5LWfrdYPs2dInuW0vnbBtDPbj-kpw1dp381e8fk4_Hh_n0mc3en16m9zPmhIKeuRpEhY2yrq4m1gqOpSvLQmoNpeZFrbmFqkFtq5rLrEB6WXnlfONQNMhxTG6OvXl3N_jUm1UYYpcnjdClQFBYTLJLHF0uhpSib8w2thsbD4aD-WZmjsxMZmZ-mBmZQ3gMpWzuFj7-Vf-T-gJe4G9N</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Nobakht-Kooshkghazi, Malihe</creator><creator>Afshin, Hamidreza</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>The new Krylov subspace methods for solving tensor equations via T-product</title><author>Nobakht-Kooshkghazi, Malihe ; Afshin, Hamidreza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-cd02b3f7acdb5aa2139c99648809816d81a0bf38abd14d8104e4be7cefc32f313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Subspace methods</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nobakht-Kooshkghazi, Malihe</creatorcontrib><creatorcontrib>Afshin, Hamidreza</creatorcontrib><collection>CrossRef</collection><jtitle>Computational &amp; applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nobakht-Kooshkghazi, Malihe</au><au>Afshin, Hamidreza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The new Krylov subspace methods for solving tensor equations via T-product</atitle><jtitle>Computational &amp; applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>42</volume><issue>8</issue><artnum>358</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>In this paper, we present two new subspace methods for solving some linear tensor equations. Using the well-known tensor T -product, we define two new methods T -block Arnoldi and T -extended block Arnoldi processes. We present numerical examples to support the theoretical results, which show that these algorithms are practical and effective for solving some tensor equations.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-023-02487-4</doi></addata></record>
fulltext fulltext
identifier ISSN: 2238-3603
ispartof Computational & applied mathematics, 2023-12, Vol.42 (8), Article 358
issn 2238-3603
1807-0302
language eng
recordid cdi_proquest_journals_2892307365
source SpringerNature Journals
subjects Algorithms
Applications of Mathematics
Computational Mathematics and Numerical Analysis
Mathematical analysis
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematics
Mathematics and Statistics
Subspace methods
Tensors
title The new Krylov subspace methods for solving tensor equations via T-product
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A18%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20new%20Krylov%20subspace%20methods%20for%20solving%20tensor%20equations%20via%20T-product&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Nobakht-Kooshkghazi,%20Malihe&rft.date=2023-12-01&rft.volume=42&rft.issue=8&rft.artnum=358&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-023-02487-4&rft_dat=%3Cproquest_cross%3E2892307365%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892307365&rft_id=info:pmid/&rfr_iscdi=true