The new Krylov subspace methods for solving tensor equations via T-product
In this paper, we present two new subspace methods for solving some linear tensor equations. Using the well-known tensor T -product, we define two new methods T -block Arnoldi and T -extended block Arnoldi processes. We present numerical examples to support the theoretical results, which show that t...
Gespeichert in:
Veröffentlicht in: | Computational & applied mathematics 2023-12, Vol.42 (8), Article 358 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Computational & applied mathematics |
container_volume | 42 |
creator | Nobakht-Kooshkghazi, Malihe Afshin, Hamidreza |
description | In this paper, we present two new subspace methods for solving some linear tensor equations. Using the well-known tensor
T
-product, we define two new methods
T
-block Arnoldi and
T
-extended block Arnoldi processes. We present numerical examples to support the theoretical results, which show that these algorithms are practical and effective for solving some tensor equations. |
doi_str_mv | 10.1007/s40314-023-02487-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2892307365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892307365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-cd02b3f7acdb5aa2139c99648809816d81a0bf38abd14d8104e4be7cefc32f313</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgOnqSk04ySyneC27qOmQymXZKO2mTmUrf3mgFdy4Ohx_-C3yEXHO45QDqLklALhkIzCe1YvKEjLgGxQBBnJKREKgZFoDn5CKlFQAqLuWIvM6Xnnb-k77FwzrsaRqqtLXO043vl6FOtAmRprDet92C9r5LWfrdYPs2dInuW0vnbBtDPbj-kpw1dp381e8fk4_Hh_n0mc3en16m9zPmhIKeuRpEhY2yrq4m1gqOpSvLQmoNpeZFrbmFqkFtq5rLrEB6WXnlfONQNMhxTG6OvXl3N_jUm1UYYpcnjdClQFBYTLJLHF0uhpSib8w2thsbD4aD-WZmjsxMZmZ-mBmZQ3gMpWzuFj7-Vf-T-gJe4G9N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892307365</pqid></control><display><type>article</type><title>The new Krylov subspace methods for solving tensor equations via T-product</title><source>SpringerNature Journals</source><creator>Nobakht-Kooshkghazi, Malihe ; Afshin, Hamidreza</creator><creatorcontrib>Nobakht-Kooshkghazi, Malihe ; Afshin, Hamidreza</creatorcontrib><description>In this paper, we present two new subspace methods for solving some linear tensor equations. Using the well-known tensor
T
-product, we define two new methods
T
-block Arnoldi and
T
-extended block Arnoldi processes. We present numerical examples to support the theoretical results, which show that these algorithms are practical and effective for solving some tensor equations.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-023-02487-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Applications of Mathematics ; Computational Mathematics and Numerical Analysis ; Mathematical analysis ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Subspace methods ; Tensors</subject><ispartof>Computational & applied mathematics, 2023-12, Vol.42 (8), Article 358</ispartof><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-cd02b3f7acdb5aa2139c99648809816d81a0bf38abd14d8104e4be7cefc32f313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40314-023-02487-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40314-023-02487-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Nobakht-Kooshkghazi, Malihe</creatorcontrib><creatorcontrib>Afshin, Hamidreza</creatorcontrib><title>The new Krylov subspace methods for solving tensor equations via T-product</title><title>Computational & applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>In this paper, we present two new subspace methods for solving some linear tensor equations. Using the well-known tensor
T
-product, we define two new methods
T
-block Arnoldi and
T
-extended block Arnoldi processes. We present numerical examples to support the theoretical results, which show that these algorithms are practical and effective for solving some tensor equations.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Subspace methods</subject><subject>Tensors</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4CrgOnqSk04ySyneC27qOmQymXZKO2mTmUrf3mgFdy4Ohx_-C3yEXHO45QDqLklALhkIzCe1YvKEjLgGxQBBnJKREKgZFoDn5CKlFQAqLuWIvM6Xnnb-k77FwzrsaRqqtLXO043vl6FOtAmRprDet92C9r5LWfrdYPs2dInuW0vnbBtDPbj-kpw1dp381e8fk4_Hh_n0mc3en16m9zPmhIKeuRpEhY2yrq4m1gqOpSvLQmoNpeZFrbmFqkFtq5rLrEB6WXnlfONQNMhxTG6OvXl3N_jUm1UYYpcnjdClQFBYTLJLHF0uhpSib8w2thsbD4aD-WZmjsxMZmZ-mBmZQ3gMpWzuFj7-Vf-T-gJe4G9N</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Nobakht-Kooshkghazi, Malihe</creator><creator>Afshin, Hamidreza</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>The new Krylov subspace methods for solving tensor equations via T-product</title><author>Nobakht-Kooshkghazi, Malihe ; Afshin, Hamidreza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-cd02b3f7acdb5aa2139c99648809816d81a0bf38abd14d8104e4be7cefc32f313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Subspace methods</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nobakht-Kooshkghazi, Malihe</creatorcontrib><creatorcontrib>Afshin, Hamidreza</creatorcontrib><collection>CrossRef</collection><jtitle>Computational & applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nobakht-Kooshkghazi, Malihe</au><au>Afshin, Hamidreza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The new Krylov subspace methods for solving tensor equations via T-product</atitle><jtitle>Computational & applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>42</volume><issue>8</issue><artnum>358</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>In this paper, we present two new subspace methods for solving some linear tensor equations. Using the well-known tensor
T
-product, we define two new methods
T
-block Arnoldi and
T
-extended block Arnoldi processes. We present numerical examples to support the theoretical results, which show that these algorithms are practical and effective for solving some tensor equations.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-023-02487-4</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2238-3603 |
ispartof | Computational & applied mathematics, 2023-12, Vol.42 (8), Article 358 |
issn | 2238-3603 1807-0302 |
language | eng |
recordid | cdi_proquest_journals_2892307365 |
source | SpringerNature Journals |
subjects | Algorithms Applications of Mathematics Computational Mathematics and Numerical Analysis Mathematical analysis Mathematical Applications in Computer Science Mathematical Applications in the Physical Sciences Mathematics Mathematics and Statistics Subspace methods Tensors |
title | The new Krylov subspace methods for solving tensor equations via T-product |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A18%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20new%20Krylov%20subspace%20methods%20for%20solving%20tensor%20equations%20via%20T-product&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Nobakht-Kooshkghazi,%20Malihe&rft.date=2023-12-01&rft.volume=42&rft.issue=8&rft.artnum=358&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-023-02487-4&rft_dat=%3Cproquest_cross%3E2892307365%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892307365&rft_id=info:pmid/&rfr_iscdi=true |