Nondestructive Testing of Steel Wire Rope Based on Gagnetic Signal and Infrared Information

This paper designs a two-dimensional magnetic signal detection device under weak magnetic excitation, which solves the problem of large volume and single signal acquisition of traditional one-dimensional detection devices. To reduce the original noise, a noise reduction algorithm combining wavelet t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian journal of nondestructive testing 2023-09, Vol.59 (9), p.991-1004
Hauptverfasser: Zhang, Juwei, Chen, Quankun, Ye, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1004
container_issue 9
container_start_page 991
container_title Russian journal of nondestructive testing
container_volume 59
creator Zhang, Juwei
Chen, Quankun
Ye, Qiang
description This paper designs a two-dimensional magnetic signal detection device under weak magnetic excitation, which solves the problem of large volume and single signal acquisition of traditional one-dimensional detection devices. To reduce the original noise, a noise reduction algorithm combining wavelet transform and improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) is proposed. A super-resolution fusion algorithm is proposed to fuse two-dimensional magnetic signals to achieve image enhancement. Finally, the convolutional neural network is used to extract the features of the two types of images, and then the features are fused, and the support vector machine (SVM) is used to classify. Under the condition of zero broken wire error, compared with the subjectively extracted color features and texture features of the two types of images as the SVM input, this algorithm’s recognition rate is increased by 37.26%.
doi_str_mv 10.1134/S1061830923600399
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2892307338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892307338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-625bc767c043ceff7b313165e372683f066ac15c19675eab78daaa34501d76b3</originalsourceid><addsrcrecordid>eNp1kE9LwzAYxoMoOKcfwFvAc_VNsibtUYfOwVBwAw8eSpq-KR1bMpNW8NubOcGDeHofeP7w8iPkksE1Y2Jys2QgWSGg5EICiLI8IiMmociEKPLjpJOd7f1TchbjGgC4EnxE3p68azD2YTB994F0lXTnWuotXfaIG_raBaQvfof0TkdsqHd0pluHfWfosmud3lDtGjp3NuiA38KHre47787JidWbiBc_d0xWD_er6WO2eJ7Np7eLzHBZ9JnkeW2UVAYmwqC1qhZMMJmjUMkXFqTUhuWGlVLlqGtVNFprMcmBNUrWYkyuDrO74N-H9H-19kNIj8WKF4kHqMQgpdghZYKPMaCtdqHb6vBZMaj2CKs_CFOHHzoxZV2L4Xf5_9IXFCJx5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892307338</pqid></control><display><type>article</type><title>Nondestructive Testing of Steel Wire Rope Based on Gagnetic Signal and Infrared Information</title><source>SpringerLink Journals</source><creator>Zhang, Juwei ; Chen, Quankun ; Ye, Qiang</creator><creatorcontrib>Zhang, Juwei ; Chen, Quankun ; Ye, Qiang</creatorcontrib><description>This paper designs a two-dimensional magnetic signal detection device under weak magnetic excitation, which solves the problem of large volume and single signal acquisition of traditional one-dimensional detection devices. To reduce the original noise, a noise reduction algorithm combining wavelet transform and improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) is proposed. A super-resolution fusion algorithm is proposed to fuse two-dimensional magnetic signals to achieve image enhancement. Finally, the convolutional neural network is used to extract the features of the two types of images, and then the features are fused, and the support vector machine (SVM) is used to classify. Under the condition of zero broken wire error, compared with the subjectively extracted color features and texture features of the two types of images as the SVM input, this algorithm’s recognition rate is increased by 37.26%.</description><identifier>ISSN: 1061-8309</identifier><identifier>EISSN: 1608-3385</identifier><identifier>DOI: 10.1134/S1061830923600399</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Artificial neural networks ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Complex Methods of Control ; Image enhancement ; Magnetic signals ; Materials Science ; Noise reduction ; Nondestructive testing ; Signal detection ; Steel wire ; Structural Materials ; Support vector machines ; Wavelet transforms ; Wire rope</subject><ispartof>Russian journal of nondestructive testing, 2023-09, Vol.59 (9), p.991-1004</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 1061-8309, Russian Journal of Nondestructive Testing, 2023, Vol. 59, No. 9, pp. 991–1004. © Pleiades Publishing, Ltd., 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-625bc767c043ceff7b313165e372683f066ac15c19675eab78daaa34501d76b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1061830923600399$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1061830923600399$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Juwei</creatorcontrib><creatorcontrib>Chen, Quankun</creatorcontrib><creatorcontrib>Ye, Qiang</creatorcontrib><title>Nondestructive Testing of Steel Wire Rope Based on Gagnetic Signal and Infrared Information</title><title>Russian journal of nondestructive testing</title><addtitle>Russ J Nondestruct Test</addtitle><description>This paper designs a two-dimensional magnetic signal detection device under weak magnetic excitation, which solves the problem of large volume and single signal acquisition of traditional one-dimensional detection devices. To reduce the original noise, a noise reduction algorithm combining wavelet transform and improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) is proposed. A super-resolution fusion algorithm is proposed to fuse two-dimensional magnetic signals to achieve image enhancement. Finally, the convolutional neural network is used to extract the features of the two types of images, and then the features are fused, and the support vector machine (SVM) is used to classify. Under the condition of zero broken wire error, compared with the subjectively extracted color features and texture features of the two types of images as the SVM input, this algorithm’s recognition rate is increased by 37.26%.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Complex Methods of Control</subject><subject>Image enhancement</subject><subject>Magnetic signals</subject><subject>Materials Science</subject><subject>Noise reduction</subject><subject>Nondestructive testing</subject><subject>Signal detection</subject><subject>Steel wire</subject><subject>Structural Materials</subject><subject>Support vector machines</subject><subject>Wavelet transforms</subject><subject>Wire rope</subject><issn>1061-8309</issn><issn>1608-3385</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LwzAYxoMoOKcfwFvAc_VNsibtUYfOwVBwAw8eSpq-KR1bMpNW8NubOcGDeHofeP7w8iPkksE1Y2Jys2QgWSGg5EICiLI8IiMmociEKPLjpJOd7f1TchbjGgC4EnxE3p68azD2YTB994F0lXTnWuotXfaIG_raBaQvfof0TkdsqHd0pluHfWfosmud3lDtGjp3NuiA38KHre47787JidWbiBc_d0xWD_er6WO2eJ7Np7eLzHBZ9JnkeW2UVAYmwqC1qhZMMJmjUMkXFqTUhuWGlVLlqGtVNFprMcmBNUrWYkyuDrO74N-H9H-19kNIj8WKF4kHqMQgpdghZYKPMaCtdqHb6vBZMaj2CKs_CFOHHzoxZV2L4Xf5_9IXFCJx5Q</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Zhang, Juwei</creator><creator>Chen, Quankun</creator><creator>Ye, Qiang</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230901</creationdate><title>Nondestructive Testing of Steel Wire Rope Based on Gagnetic Signal and Infrared Information</title><author>Zhang, Juwei ; Chen, Quankun ; Ye, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-625bc767c043ceff7b313165e372683f066ac15c19675eab78daaa34501d76b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Complex Methods of Control</topic><topic>Image enhancement</topic><topic>Magnetic signals</topic><topic>Materials Science</topic><topic>Noise reduction</topic><topic>Nondestructive testing</topic><topic>Signal detection</topic><topic>Steel wire</topic><topic>Structural Materials</topic><topic>Support vector machines</topic><topic>Wavelet transforms</topic><topic>Wire rope</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Juwei</creatorcontrib><creatorcontrib>Chen, Quankun</creatorcontrib><creatorcontrib>Ye, Qiang</creatorcontrib><collection>CrossRef</collection><jtitle>Russian journal of nondestructive testing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Juwei</au><au>Chen, Quankun</au><au>Ye, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nondestructive Testing of Steel Wire Rope Based on Gagnetic Signal and Infrared Information</atitle><jtitle>Russian journal of nondestructive testing</jtitle><stitle>Russ J Nondestruct Test</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>59</volume><issue>9</issue><spage>991</spage><epage>1004</epage><pages>991-1004</pages><issn>1061-8309</issn><eissn>1608-3385</eissn><abstract>This paper designs a two-dimensional magnetic signal detection device under weak magnetic excitation, which solves the problem of large volume and single signal acquisition of traditional one-dimensional detection devices. To reduce the original noise, a noise reduction algorithm combining wavelet transform and improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) is proposed. A super-resolution fusion algorithm is proposed to fuse two-dimensional magnetic signals to achieve image enhancement. Finally, the convolutional neural network is used to extract the features of the two types of images, and then the features are fused, and the support vector machine (SVM) is used to classify. Under the condition of zero broken wire error, compared with the subjectively extracted color features and texture features of the two types of images as the SVM input, this algorithm’s recognition rate is increased by 37.26%.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1061830923600399</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1061-8309
ispartof Russian journal of nondestructive testing, 2023-09, Vol.59 (9), p.991-1004
issn 1061-8309
1608-3385
language eng
recordid cdi_proquest_journals_2892307338
source SpringerLink Journals
subjects Algorithms
Artificial neural networks
Characterization and Evaluation of Materials
Chemistry and Materials Science
Complex Methods of Control
Image enhancement
Magnetic signals
Materials Science
Noise reduction
Nondestructive testing
Signal detection
Steel wire
Structural Materials
Support vector machines
Wavelet transforms
Wire rope
title Nondestructive Testing of Steel Wire Rope Based on Gagnetic Signal and Infrared Information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A17%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nondestructive%20Testing%20of%20Steel%20Wire%20Rope%20Based%20on%20Gagnetic%20Signal%20and%20Infrared%20Information&rft.jtitle=Russian%20journal%20of%20nondestructive%20testing&rft.au=Zhang,%20Juwei&rft.date=2023-09-01&rft.volume=59&rft.issue=9&rft.spage=991&rft.epage=1004&rft.pages=991-1004&rft.issn=1061-8309&rft.eissn=1608-3385&rft_id=info:doi/10.1134/S1061830923600399&rft_dat=%3Cproquest_cross%3E2892307338%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892307338&rft_id=info:pmid/&rfr_iscdi=true