New criteria for predefined finite time synchronization of memristor-based neural networks

The fast synchronization problem of memristor-based neural networks is studied in this article. Firstly, a novel predefined finite time stability of a class of nonlinear dynamical systems is investigated under the incomplete beta function, complete beta function, and inequality technology. Then, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vibration and control 2023-12, Vol.29 (23-24), p.5532-5544
1. Verfasser: Lin, Lixiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5544
container_issue 23-24
container_start_page 5532
container_title Journal of vibration and control
container_volume 29
creator Lin, Lixiong
description The fast synchronization problem of memristor-based neural networks is studied in this article. Firstly, a novel predefined finite time stability of a class of nonlinear dynamical systems is investigated under the incomplete beta function, complete beta function, and inequality technology. Then, an active predefined finite time controller is designed that guarantees finite time stability of synchronization errors of two memristor-based neural networks with/without proportional delay. Some simulation results are presented to show the effectiveness of theoretical results.
doi_str_mv 10.1177/10775463221137476
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2892250787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_10775463221137476</sage_id><sourcerecordid>2892250787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-c0351b547e4ae3d9b70f04698068b4f61d78c88f88389f7fe0d37e0db11945be3</originalsourceid><addsrcrecordid>eNp1UMtKxDAUDaLg-PgAdwHXHXPTtEmXMviCQTe6cVPS9kYzTpvxpsMwfr0ZRnAhbs65cB4XDmMXIKYAWl-B0LpQZS4lQK6VLg_YBLSCTFamPEx30rOd4ZidxLgQQigFYsJeH3HDW_IjkrfcBeIrwg6dH7DjCZPAR98jj9uhfacw-C87-jDw4HiPPfk4BsoaG5N9wDXZZaJxE-gjnrEjZ5cRz3_4lL3c3jzP7rP5093D7HqetVLqMWtFXkBTKI3KYt5VjRZOqLIyojSNciV02rTGOGNyUzntUHS5TtAAVKpoMD9ll_veFYXPNcaxXoQ1DellLU0lZSG00ckFe1dLIUZCV6_I95a2NYh6N2H9Z8KUme4z0b7hb-v_gW_Cw3F5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892250787</pqid></control><display><type>article</type><title>New criteria for predefined finite time synchronization of memristor-based neural networks</title><source>Access via SAGE</source><creator>Lin, Lixiong</creator><creatorcontrib>Lin, Lixiong</creatorcontrib><description>The fast synchronization problem of memristor-based neural networks is studied in this article. Firstly, a novel predefined finite time stability of a class of nonlinear dynamical systems is investigated under the incomplete beta function, complete beta function, and inequality technology. Then, an active predefined finite time controller is designed that guarantees finite time stability of synchronization errors of two memristor-based neural networks with/without proportional delay. Some simulation results are presented to show the effectiveness of theoretical results.</description><identifier>ISSN: 1077-5463</identifier><identifier>EISSN: 1741-2986</identifier><identifier>DOI: 10.1177/10775463221137476</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Control systems design ; Dynamic stability ; Memristors ; Neural networks ; Nonlinear systems ; Time synchronization</subject><ispartof>Journal of vibration and control, 2023-12, Vol.29 (23-24), p.5532-5544</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c227t-c0351b547e4ae3d9b70f04698068b4f61d78c88f88389f7fe0d37e0db11945be3</cites><orcidid>0000-0002-9829-5358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/10775463221137476$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/10775463221137476$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Lin, Lixiong</creatorcontrib><title>New criteria for predefined finite time synchronization of memristor-based neural networks</title><title>Journal of vibration and control</title><description>The fast synchronization problem of memristor-based neural networks is studied in this article. Firstly, a novel predefined finite time stability of a class of nonlinear dynamical systems is investigated under the incomplete beta function, complete beta function, and inequality technology. Then, an active predefined finite time controller is designed that guarantees finite time stability of synchronization errors of two memristor-based neural networks with/without proportional delay. Some simulation results are presented to show the effectiveness of theoretical results.</description><subject>Control systems design</subject><subject>Dynamic stability</subject><subject>Memristors</subject><subject>Neural networks</subject><subject>Nonlinear systems</subject><subject>Time synchronization</subject><issn>1077-5463</issn><issn>1741-2986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKxDAUDaLg-PgAdwHXHXPTtEmXMviCQTe6cVPS9kYzTpvxpsMwfr0ZRnAhbs65cB4XDmMXIKYAWl-B0LpQZS4lQK6VLg_YBLSCTFamPEx30rOd4ZidxLgQQigFYsJeH3HDW_IjkrfcBeIrwg6dH7DjCZPAR98jj9uhfacw-C87-jDw4HiPPfk4BsoaG5N9wDXZZaJxE-gjnrEjZ5cRz3_4lL3c3jzP7rP5093D7HqetVLqMWtFXkBTKI3KYt5VjRZOqLIyojSNciV02rTGOGNyUzntUHS5TtAAVKpoMD9ll_veFYXPNcaxXoQ1DellLU0lZSG00ckFe1dLIUZCV6_I95a2NYh6N2H9Z8KUme4z0b7hb-v_gW_Cw3F5</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Lin, Lixiong</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9829-5358</orcidid></search><sort><creationdate>202312</creationdate><title>New criteria for predefined finite time synchronization of memristor-based neural networks</title><author>Lin, Lixiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-c0351b547e4ae3d9b70f04698068b4f61d78c88f88389f7fe0d37e0db11945be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Control systems design</topic><topic>Dynamic stability</topic><topic>Memristors</topic><topic>Neural networks</topic><topic>Nonlinear systems</topic><topic>Time synchronization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Lixiong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of vibration and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Lixiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New criteria for predefined finite time synchronization of memristor-based neural networks</atitle><jtitle>Journal of vibration and control</jtitle><date>2023-12</date><risdate>2023</risdate><volume>29</volume><issue>23-24</issue><spage>5532</spage><epage>5544</epage><pages>5532-5544</pages><issn>1077-5463</issn><eissn>1741-2986</eissn><abstract>The fast synchronization problem of memristor-based neural networks is studied in this article. Firstly, a novel predefined finite time stability of a class of nonlinear dynamical systems is investigated under the incomplete beta function, complete beta function, and inequality technology. Then, an active predefined finite time controller is designed that guarantees finite time stability of synchronization errors of two memristor-based neural networks with/without proportional delay. Some simulation results are presented to show the effectiveness of theoretical results.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/10775463221137476</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9829-5358</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1077-5463
ispartof Journal of vibration and control, 2023-12, Vol.29 (23-24), p.5532-5544
issn 1077-5463
1741-2986
language eng
recordid cdi_proquest_journals_2892250787
source Access via SAGE
subjects Control systems design
Dynamic stability
Memristors
Neural networks
Nonlinear systems
Time synchronization
title New criteria for predefined finite time synchronization of memristor-based neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T09%3A08%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20criteria%20for%20predefined%20finite%20time%20synchronization%20of%20memristor-based%20neural%20networks&rft.jtitle=Journal%20of%20vibration%20and%20control&rft.au=Lin,%20Lixiong&rft.date=2023-12&rft.volume=29&rft.issue=23-24&rft.spage=5532&rft.epage=5544&rft.pages=5532-5544&rft.issn=1077-5463&rft.eissn=1741-2986&rft_id=info:doi/10.1177/10775463221137476&rft_dat=%3Cproquest_cross%3E2892250787%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892250787&rft_id=info:pmid/&rft_sage_id=10.1177_10775463221137476&rfr_iscdi=true