Boundedness criteria for the fractional integral and fractional maximal operator on Morrey spaces generated by the Gegenbauer differential operator

In this paper, we establish necessary and sufficient conditions for the boundedness of the fractional integral on G‐Morrey space generated by Gegenbauer differential operator. A similar problem is studied for the fractional maximal operator.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2023-12, Vol.46 (18), p.18605-18632
Hauptverfasser: Ibrahimov, Elman J., Jafarova, Saadat Ar, Bandaliyev, Rovshan A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18632
container_issue 18
container_start_page 18605
container_title Mathematical methods in the applied sciences
container_volume 46
creator Ibrahimov, Elman J.
Jafarova, Saadat Ar
Bandaliyev, Rovshan A.
description In this paper, we establish necessary and sufficient conditions for the boundedness of the fractional integral on G‐Morrey space generated by Gegenbauer differential operator. A similar problem is studied for the fractional maximal operator.
doi_str_mv 10.1002/mma.9582
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2892161212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892161212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-3f87ab81257982901bd3dededff0a3cf40075e55d2d16beaa129352160cf877a3</originalsourceid><addsrcrecordid>eNpNUEFOwzAQtBBIlILEEyxx4ZLidZImOUIFBamIC5wjJ16XVI0d1o5E38GHcSmHnmY1OzPSDGPXIGYghLzrezWr8lKesAmIqkogK-anbCKgEEkmITtnF95vhBAlgJywnwc3Wo3aove8pS4gdYobRzx8Ijek2tA5q7a8swHXFA9l9THfq--uj-gGJBWiz1n-6ohwx_2gWvR8jXb_Qs2b3V_qEiPVqBGJ684YJLShO4q4ZGdGbT1e_eOUfTw9vi-ek9Xb8mVxv0pamechSU1ZqKYEmRdVKSsBjU5jE9TGCJW2JhOiyDHPtdQwb1ApkFWaS5iLNjoLlU7ZzSF3IPc1og_1xo0US_lallUUggQZVbcHVUvOe0JTDxQb064GUe8nr-Pk9X7y9BcEwnd-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892161212</pqid></control><display><type>article</type><title>Boundedness criteria for the fractional integral and fractional maximal operator on Morrey spaces generated by the Gegenbauer differential operator</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ibrahimov, Elman J. ; Jafarova, Saadat Ar ; Bandaliyev, Rovshan A.</creator><creatorcontrib>Ibrahimov, Elman J. ; Jafarova, Saadat Ar ; Bandaliyev, Rovshan A.</creatorcontrib><description>In this paper, we establish necessary and sufficient conditions for the boundedness of the fractional integral on G‐Morrey space generated by Gegenbauer differential operator. A similar problem is studied for the fractional maximal operator.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.9582</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Differential equations ; Fractional calculus ; Operators (mathematics)</subject><ispartof>Mathematical methods in the applied sciences, 2023-12, Vol.46 (18), p.18605-18632</ispartof><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c255t-3f87ab81257982901bd3dededff0a3cf40075e55d2d16beaa129352160cf877a3</citedby><cites>FETCH-LOGICAL-c255t-3f87ab81257982901bd3dededff0a3cf40075e55d2d16beaa129352160cf877a3</cites><orcidid>0000-0001-5643-9635</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ibrahimov, Elman J.</creatorcontrib><creatorcontrib>Jafarova, Saadat Ar</creatorcontrib><creatorcontrib>Bandaliyev, Rovshan A.</creatorcontrib><title>Boundedness criteria for the fractional integral and fractional maximal operator on Morrey spaces generated by the Gegenbauer differential operator</title><title>Mathematical methods in the applied sciences</title><description>In this paper, we establish necessary and sufficient conditions for the boundedness of the fractional integral on G‐Morrey space generated by Gegenbauer differential operator. A similar problem is studied for the fractional maximal operator.</description><subject>Differential equations</subject><subject>Fractional calculus</subject><subject>Operators (mathematics)</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNUEFOwzAQtBBIlILEEyxx4ZLidZImOUIFBamIC5wjJ16XVI0d1o5E38GHcSmHnmY1OzPSDGPXIGYghLzrezWr8lKesAmIqkogK-anbCKgEEkmITtnF95vhBAlgJywnwc3Wo3aove8pS4gdYobRzx8Ijek2tA5q7a8swHXFA9l9THfq--uj-gGJBWiz1n-6ohwx_2gWvR8jXb_Qs2b3V_qEiPVqBGJ684YJLShO4q4ZGdGbT1e_eOUfTw9vi-ek9Xb8mVxv0pamechSU1ZqKYEmRdVKSsBjU5jE9TGCJW2JhOiyDHPtdQwb1ApkFWaS5iLNjoLlU7ZzSF3IPc1og_1xo0US_lallUUggQZVbcHVUvOe0JTDxQb064GUe8nr-Pk9X7y9BcEwnd-</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Ibrahimov, Elman J.</creator><creator>Jafarova, Saadat Ar</creator><creator>Bandaliyev, Rovshan A.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-5643-9635</orcidid></search><sort><creationdate>202312</creationdate><title>Boundedness criteria for the fractional integral and fractional maximal operator on Morrey spaces generated by the Gegenbauer differential operator</title><author>Ibrahimov, Elman J. ; Jafarova, Saadat Ar ; Bandaliyev, Rovshan A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-3f87ab81257982901bd3dededff0a3cf40075e55d2d16beaa129352160cf877a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Differential equations</topic><topic>Fractional calculus</topic><topic>Operators (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibrahimov, Elman J.</creatorcontrib><creatorcontrib>Jafarova, Saadat Ar</creatorcontrib><creatorcontrib>Bandaliyev, Rovshan A.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ibrahimov, Elman J.</au><au>Jafarova, Saadat Ar</au><au>Bandaliyev, Rovshan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundedness criteria for the fractional integral and fractional maximal operator on Morrey spaces generated by the Gegenbauer differential operator</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2023-12</date><risdate>2023</risdate><volume>46</volume><issue>18</issue><spage>18605</spage><epage>18632</epage><pages>18605-18632</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, we establish necessary and sufficient conditions for the boundedness of the fractional integral on G‐Morrey space generated by Gegenbauer differential operator. A similar problem is studied for the fractional maximal operator.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.9582</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0001-5643-9635</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2023-12, Vol.46 (18), p.18605-18632
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2892161212
source Wiley Online Library Journals Frontfile Complete
subjects Differential equations
Fractional calculus
Operators (mathematics)
title Boundedness criteria for the fractional integral and fractional maximal operator on Morrey spaces generated by the Gegenbauer differential operator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A50%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundedness%20criteria%20for%20the%20fractional%20integral%20and%20fractional%20maximal%20operator%20on%20Morrey%20spaces%20generated%20by%20the%20Gegenbauer%20differential%20operator&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Ibrahimov,%20Elman%20J.&rft.date=2023-12&rft.volume=46&rft.issue=18&rft.spage=18605&rft.epage=18632&rft.pages=18605-18632&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.9582&rft_dat=%3Cproquest_cross%3E2892161212%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892161212&rft_id=info:pmid/&rfr_iscdi=true