Boundedness criteria for the fractional integral and fractional maximal operator on Morrey spaces generated by the Gegenbauer differential operator
In this paper, we establish necessary and sufficient conditions for the boundedness of the fractional integral on G‐Morrey space generated by Gegenbauer differential operator. A similar problem is studied for the fractional maximal operator.
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2023-12, Vol.46 (18), p.18605-18632 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18632 |
---|---|
container_issue | 18 |
container_start_page | 18605 |
container_title | Mathematical methods in the applied sciences |
container_volume | 46 |
creator | Ibrahimov, Elman J. Jafarova, Saadat Ar Bandaliyev, Rovshan A. |
description | In this paper, we establish necessary and sufficient conditions for the boundedness of the fractional integral on G‐Morrey space generated by Gegenbauer differential operator. A similar problem is studied for the fractional maximal operator. |
doi_str_mv | 10.1002/mma.9582 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2892161212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892161212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-3f87ab81257982901bd3dededff0a3cf40075e55d2d16beaa129352160cf877a3</originalsourceid><addsrcrecordid>eNpNUEFOwzAQtBBIlILEEyxx4ZLidZImOUIFBamIC5wjJ16XVI0d1o5E38GHcSmHnmY1OzPSDGPXIGYghLzrezWr8lKesAmIqkogK-anbCKgEEkmITtnF95vhBAlgJywnwc3Wo3aove8pS4gdYobRzx8Ijek2tA5q7a8swHXFA9l9THfq--uj-gGJBWiz1n-6ohwx_2gWvR8jXb_Qs2b3V_qEiPVqBGJ684YJLShO4q4ZGdGbT1e_eOUfTw9vi-ek9Xb8mVxv0pamechSU1ZqKYEmRdVKSsBjU5jE9TGCJW2JhOiyDHPtdQwb1ApkFWaS5iLNjoLlU7ZzSF3IPc1og_1xo0US_lallUUggQZVbcHVUvOe0JTDxQb064GUe8nr-Pk9X7y9BcEwnd-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892161212</pqid></control><display><type>article</type><title>Boundedness criteria for the fractional integral and fractional maximal operator on Morrey spaces generated by the Gegenbauer differential operator</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ibrahimov, Elman J. ; Jafarova, Saadat Ar ; Bandaliyev, Rovshan A.</creator><creatorcontrib>Ibrahimov, Elman J. ; Jafarova, Saadat Ar ; Bandaliyev, Rovshan A.</creatorcontrib><description>In this paper, we establish necessary and sufficient conditions for the boundedness of the fractional integral on G‐Morrey space generated by Gegenbauer differential operator. A similar problem is studied for the fractional maximal operator.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.9582</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Differential equations ; Fractional calculus ; Operators (mathematics)</subject><ispartof>Mathematical methods in the applied sciences, 2023-12, Vol.46 (18), p.18605-18632</ispartof><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c255t-3f87ab81257982901bd3dededff0a3cf40075e55d2d16beaa129352160cf877a3</citedby><cites>FETCH-LOGICAL-c255t-3f87ab81257982901bd3dededff0a3cf40075e55d2d16beaa129352160cf877a3</cites><orcidid>0000-0001-5643-9635</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ibrahimov, Elman J.</creatorcontrib><creatorcontrib>Jafarova, Saadat Ar</creatorcontrib><creatorcontrib>Bandaliyev, Rovshan A.</creatorcontrib><title>Boundedness criteria for the fractional integral and fractional maximal operator on Morrey spaces generated by the Gegenbauer differential operator</title><title>Mathematical methods in the applied sciences</title><description>In this paper, we establish necessary and sufficient conditions for the boundedness of the fractional integral on G‐Morrey space generated by Gegenbauer differential operator. A similar problem is studied for the fractional maximal operator.</description><subject>Differential equations</subject><subject>Fractional calculus</subject><subject>Operators (mathematics)</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNUEFOwzAQtBBIlILEEyxx4ZLidZImOUIFBamIC5wjJ16XVI0d1o5E38GHcSmHnmY1OzPSDGPXIGYghLzrezWr8lKesAmIqkogK-anbCKgEEkmITtnF95vhBAlgJywnwc3Wo3aove8pS4gdYobRzx8Ijek2tA5q7a8swHXFA9l9THfq--uj-gGJBWiz1n-6ohwx_2gWvR8jXb_Qs2b3V_qEiPVqBGJ684YJLShO4q4ZGdGbT1e_eOUfTw9vi-ek9Xb8mVxv0pamechSU1ZqKYEmRdVKSsBjU5jE9TGCJW2JhOiyDHPtdQwb1ApkFWaS5iLNjoLlU7ZzSF3IPc1og_1xo0US_lallUUggQZVbcHVUvOe0JTDxQb064GUe8nr-Pk9X7y9BcEwnd-</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Ibrahimov, Elman J.</creator><creator>Jafarova, Saadat Ar</creator><creator>Bandaliyev, Rovshan A.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-5643-9635</orcidid></search><sort><creationdate>202312</creationdate><title>Boundedness criteria for the fractional integral and fractional maximal operator on Morrey spaces generated by the Gegenbauer differential operator</title><author>Ibrahimov, Elman J. ; Jafarova, Saadat Ar ; Bandaliyev, Rovshan A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-3f87ab81257982901bd3dededff0a3cf40075e55d2d16beaa129352160cf877a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Differential equations</topic><topic>Fractional calculus</topic><topic>Operators (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibrahimov, Elman J.</creatorcontrib><creatorcontrib>Jafarova, Saadat Ar</creatorcontrib><creatorcontrib>Bandaliyev, Rovshan A.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ibrahimov, Elman J.</au><au>Jafarova, Saadat Ar</au><au>Bandaliyev, Rovshan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundedness criteria for the fractional integral and fractional maximal operator on Morrey spaces generated by the Gegenbauer differential operator</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2023-12</date><risdate>2023</risdate><volume>46</volume><issue>18</issue><spage>18605</spage><epage>18632</epage><pages>18605-18632</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, we establish necessary and sufficient conditions for the boundedness of the fractional integral on G‐Morrey space generated by Gegenbauer differential operator. A similar problem is studied for the fractional maximal operator.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.9582</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0001-5643-9635</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2023-12, Vol.46 (18), p.18605-18632 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2892161212 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Differential equations Fractional calculus Operators (mathematics) |
title | Boundedness criteria for the fractional integral and fractional maximal operator on Morrey spaces generated by the Gegenbauer differential operator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A50%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundedness%20criteria%20for%20the%20fractional%20integral%20and%20fractional%20maximal%20operator%20on%20Morrey%20spaces%20generated%20by%20the%20Gegenbauer%20differential%20operator&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Ibrahimov,%20Elman%20J.&rft.date=2023-12&rft.volume=46&rft.issue=18&rft.spage=18605&rft.epage=18632&rft.pages=18605-18632&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.9582&rft_dat=%3Cproquest_cross%3E2892161212%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892161212&rft_id=info:pmid/&rfr_iscdi=true |