Proton exchange membrane water electrolysis at high current densities: Response time and gas‐water distribution

Understanding the distribution of oxygen in proton exchange membrane water electrolysis (PEMWE) is crucial for improving electrolysis efficiency and gas removal. In this study, we developed a two‐dimensional (2D) transient model that couples the Euler–Euler multiphase model with electric potential e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2023-12, Vol.69 (12)
Hauptverfasser: Bai, Jinhao, Li, Zifeng, Zhang, Jingchang, Guan, Xiaoping, Yang, Ning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title AIChE journal
container_volume 69
creator Bai, Jinhao
Li, Zifeng
Zhang, Jingchang
Guan, Xiaoping
Yang, Ning
description Understanding the distribution of oxygen in proton exchange membrane water electrolysis (PEMWE) is crucial for improving electrolysis efficiency and gas removal. In this study, we developed a two‐dimensional (2D) transient model that couples the Euler–Euler multiphase model with electric potential equations to investigate two‐phase flow in PEMWE. Our simulation reveals that the system's response time initially decreases and then increases with current density, indicating longer response times at high current densities. Modifying the wetting properties of the porous transport layer (PTL) affects gas removal at low gas holdup, resulting in a maximum 15% decrease in gas holdup. However, at high gas holdup, the flow field in the channel predominantly governs bubble removal, making changes in PTL wetting properties less influential. With increasing gas production rate, an inverse gradient distribution of gas saturation appears, leading to uneven gas saturation and hindering efficient oxygen removal. This non‐uniform gas saturation adversely affects electrolysis performance.
doi_str_mv 10.1002/aic.18223
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2892043575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892043575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-727d93ad6dda83ec82c7fba464d6e695f20d46a8e4a4be0db2b3daa5d43cbccf3</originalsourceid><addsrcrecordid>eNotkMtKAzEYhYMoWKsL3yDgysXUTC5zcSfFGxQU0fXwT_JPm9JJ2iRFu_MRfEafxNG6OpzD4Rz4CDnP2SRnjF-B1ZO84lwckFGuZJmpmqlDMmKM5dkQ5MfkJMbl4HhZ8RHZPAefvKP4oRfg5kh77NsADuk7JAwUV6hT8KtdtJFCogs7X1C9DQFdogZdtMlivKYvGNfeRaTJ9kjBGTqH-P35tV8xNqZg222y3p2Sow5WEc_-dUze7m5fpw_Z7On-cXozyzRXZcpKXppagCmMgUqgrrguuxZkIU2BRa06zowsoEIJskVmWt4KA6CMFLrVuhNjcrHfXQe_2WJMzdJvgxsuG17VnEmhSjW0LvctHXyMAbtmHWwPYdfkrPkl2gxEmz-i4gfGhW1_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892043575</pqid></control><display><type>article</type><title>Proton exchange membrane water electrolysis at high current densities: Response time and gas‐water distribution</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Bai, Jinhao ; Li, Zifeng ; Zhang, Jingchang ; Guan, Xiaoping ; Yang, Ning</creator><creatorcontrib>Bai, Jinhao ; Li, Zifeng ; Zhang, Jingchang ; Guan, Xiaoping ; Yang, Ning</creatorcontrib><description>Understanding the distribution of oxygen in proton exchange membrane water electrolysis (PEMWE) is crucial for improving electrolysis efficiency and gas removal. In this study, we developed a two‐dimensional (2D) transient model that couples the Euler–Euler multiphase model with electric potential equations to investigate two‐phase flow in PEMWE. Our simulation reveals that the system's response time initially decreases and then increases with current density, indicating longer response times at high current densities. Modifying the wetting properties of the porous transport layer (PTL) affects gas removal at low gas holdup, resulting in a maximum 15% decrease in gas holdup. However, at high gas holdup, the flow field in the channel predominantly governs bubble removal, making changes in PTL wetting properties less influential. With increasing gas production rate, an inverse gradient distribution of gas saturation appears, leading to uneven gas saturation and hindering efficient oxygen removal. This non‐uniform gas saturation adversely affects electrolysis performance.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.18223</identifier><language>eng</language><publisher>New York: American Institute of Chemical Engineers</publisher><subject>Current density ; Electric potential ; Electrolysis ; Gas production ; High current ; Membranes ; Oil and gas production ; Oxygen ; Protons ; Response time ; Two dimensional models ; Water distribution ; Water engineering ; Wetting</subject><ispartof>AIChE journal, 2023-12, Vol.69 (12)</ispartof><rights>2023 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-727d93ad6dda83ec82c7fba464d6e695f20d46a8e4a4be0db2b3daa5d43cbccf3</citedby><cites>FETCH-LOGICAL-c257t-727d93ad6dda83ec82c7fba464d6e695f20d46a8e4a4be0db2b3daa5d43cbccf3</cites><orcidid>0000-0002-7446-8568</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Bai, Jinhao</creatorcontrib><creatorcontrib>Li, Zifeng</creatorcontrib><creatorcontrib>Zhang, Jingchang</creatorcontrib><creatorcontrib>Guan, Xiaoping</creatorcontrib><creatorcontrib>Yang, Ning</creatorcontrib><title>Proton exchange membrane water electrolysis at high current densities: Response time and gas‐water distribution</title><title>AIChE journal</title><description>Understanding the distribution of oxygen in proton exchange membrane water electrolysis (PEMWE) is crucial for improving electrolysis efficiency and gas removal. In this study, we developed a two‐dimensional (2D) transient model that couples the Euler–Euler multiphase model with electric potential equations to investigate two‐phase flow in PEMWE. Our simulation reveals that the system's response time initially decreases and then increases with current density, indicating longer response times at high current densities. Modifying the wetting properties of the porous transport layer (PTL) affects gas removal at low gas holdup, resulting in a maximum 15% decrease in gas holdup. However, at high gas holdup, the flow field in the channel predominantly governs bubble removal, making changes in PTL wetting properties less influential. With increasing gas production rate, an inverse gradient distribution of gas saturation appears, leading to uneven gas saturation and hindering efficient oxygen removal. This non‐uniform gas saturation adversely affects electrolysis performance.</description><subject>Current density</subject><subject>Electric potential</subject><subject>Electrolysis</subject><subject>Gas production</subject><subject>High current</subject><subject>Membranes</subject><subject>Oil and gas production</subject><subject>Oxygen</subject><subject>Protons</subject><subject>Response time</subject><subject>Two dimensional models</subject><subject>Water distribution</subject><subject>Water engineering</subject><subject>Wetting</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkMtKAzEYhYMoWKsL3yDgysXUTC5zcSfFGxQU0fXwT_JPm9JJ2iRFu_MRfEafxNG6OpzD4Rz4CDnP2SRnjF-B1ZO84lwckFGuZJmpmqlDMmKM5dkQ5MfkJMbl4HhZ8RHZPAefvKP4oRfg5kh77NsADuk7JAwUV6hT8KtdtJFCogs7X1C9DQFdogZdtMlivKYvGNfeRaTJ9kjBGTqH-P35tV8xNqZg222y3p2Sow5WEc_-dUze7m5fpw_Z7On-cXozyzRXZcpKXppagCmMgUqgrrguuxZkIU2BRa06zowsoEIJskVmWt4KA6CMFLrVuhNjcrHfXQe_2WJMzdJvgxsuG17VnEmhSjW0LvctHXyMAbtmHWwPYdfkrPkl2gxEmz-i4gfGhW1_</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Bai, Jinhao</creator><creator>Li, Zifeng</creator><creator>Zhang, Jingchang</creator><creator>Guan, Xiaoping</creator><creator>Yang, Ning</creator><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7446-8568</orcidid></search><sort><creationdate>20231201</creationdate><title>Proton exchange membrane water electrolysis at high current densities: Response time and gas‐water distribution</title><author>Bai, Jinhao ; Li, Zifeng ; Zhang, Jingchang ; Guan, Xiaoping ; Yang, Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-727d93ad6dda83ec82c7fba464d6e695f20d46a8e4a4be0db2b3daa5d43cbccf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Current density</topic><topic>Electric potential</topic><topic>Electrolysis</topic><topic>Gas production</topic><topic>High current</topic><topic>Membranes</topic><topic>Oil and gas production</topic><topic>Oxygen</topic><topic>Protons</topic><topic>Response time</topic><topic>Two dimensional models</topic><topic>Water distribution</topic><topic>Water engineering</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Jinhao</creatorcontrib><creatorcontrib>Li, Zifeng</creatorcontrib><creatorcontrib>Zhang, Jingchang</creatorcontrib><creatorcontrib>Guan, Xiaoping</creatorcontrib><creatorcontrib>Yang, Ning</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Jinhao</au><au>Li, Zifeng</au><au>Zhang, Jingchang</au><au>Guan, Xiaoping</au><au>Yang, Ning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proton exchange membrane water electrolysis at high current densities: Response time and gas‐water distribution</atitle><jtitle>AIChE journal</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>69</volume><issue>12</issue><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>Understanding the distribution of oxygen in proton exchange membrane water electrolysis (PEMWE) is crucial for improving electrolysis efficiency and gas removal. In this study, we developed a two‐dimensional (2D) transient model that couples the Euler–Euler multiphase model with electric potential equations to investigate two‐phase flow in PEMWE. Our simulation reveals that the system's response time initially decreases and then increases with current density, indicating longer response times at high current densities. Modifying the wetting properties of the porous transport layer (PTL) affects gas removal at low gas holdup, resulting in a maximum 15% decrease in gas holdup. However, at high gas holdup, the flow field in the channel predominantly governs bubble removal, making changes in PTL wetting properties less influential. With increasing gas production rate, an inverse gradient distribution of gas saturation appears, leading to uneven gas saturation and hindering efficient oxygen removal. This non‐uniform gas saturation adversely affects electrolysis performance.</abstract><cop>New York</cop><pub>American Institute of Chemical Engineers</pub><doi>10.1002/aic.18223</doi><orcidid>https://orcid.org/0000-0002-7446-8568</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2023-12, Vol.69 (12)
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_journals_2892043575
source Wiley Online Library - AutoHoldings Journals
subjects Current density
Electric potential
Electrolysis
Gas production
High current
Membranes
Oil and gas production
Oxygen
Protons
Response time
Two dimensional models
Water distribution
Water engineering
Wetting
title Proton exchange membrane water electrolysis at high current densities: Response time and gas‐water distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T07%3A04%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proton%20exchange%20membrane%20water%20electrolysis%20at%20high%20current%20densities:%20Response%20time%20and%20gas%E2%80%90water%20distribution&rft.jtitle=AIChE%20journal&rft.au=Bai,%20Jinhao&rft.date=2023-12-01&rft.volume=69&rft.issue=12&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.18223&rft_dat=%3Cproquest_cross%3E2892043575%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892043575&rft_id=info:pmid/&rfr_iscdi=true