Analyzing the occurrence of foaming in batch fermentation processes using multiway partial least square approaches

This article presents an application of multiway partial least squares (MPLS) methods to develop interpretative correlation models to monitor the foaming occurrence and improve batch fermentation. We choose the exhaust differential pressure as a quality variable to quantify the foaming occurrence an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2023-12, Vol.69 (12)
Hauptverfasser: Nguyen, Xuan Dung James, Sharma, Niket, Liu, Y. A., Lee, Youngju, McDowell, Christopher C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title AIChE journal
container_volume 69
creator Nguyen, Xuan Dung James
Sharma, Niket
Liu, Y. A.
Lee, Youngju
McDowell, Christopher C.
description This article presents an application of multiway partial least squares (MPLS) methods to develop interpretative correlation models to monitor the foaming occurrence and improve batch fermentation. We choose the exhaust differential pressure as a quality variable to quantify the foaming occurrence and consider three‐dimensional datasets of different batches, process variables, and measurements. We integrate batch‐wise unfolding (BWU) and observation‐wise unfolding (OWU) of plant datasets with standard, dynamic, and kernel PLS methods. We find that dynamic PLS (DPLS) with OWU and time‐lagged quality variables to be the most efficient, accurate, and easy to implement. The BWU approach is useful for analyzing the differences between batches and identifying abnormalities and outliers, while the OWU quantifies the variation within a given batch. With OWU, the DPLS method with one unit of time lag in the quality variable is the most effective, accurate, and easy to implement. With both BWU and OWU, we identify the quantitative effects of process variables on the quality variable and providence guidance to improve fermentation performance.
doi_str_mv 10.1002/aic.18250
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2892043560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892043560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-ecbbf11360eb67f35a5f010f3cdd36c51544eed76f8c3fef69fa2ccb482ea96d3</originalsourceid><addsrcrecordid>eNotkElPwzAQhS0EEmU58A8sceKQ4iXOcqwqNqkSFzhHk8mYpspW2xEqvx6Xcprt0zy9x9idFEsphHqEFpeyUEacsYU0aZ6YUphzthBCyCQu5CW78n4XJ5UXasHcaoDu8NMOXzxsiY-Is3M0YGwttyP0x0s78BoCbrkl19MQILTjwCc3InlPns_-SPVzF9pvOPAJXGih4x2BD9zvZ3DEYYo84Jb8Dbuw0Hm6_a_X7PP56WP9mmzeX97Wq02CqlQhIaxrK6XOBNVZbrUBY4UUVmPT6AxNNJMSNXlmC9SWbFZaUIh1WiiCMmv0Nbs__Y3C-5l8qHbj7KJdX6miVCLVJhORejhR6EbvHdlqcm0P7lBJUR0jrWKk1V-k-heANmy-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892043560</pqid></control><display><type>article</type><title>Analyzing the occurrence of foaming in batch fermentation processes using multiway partial least square approaches</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nguyen, Xuan Dung James ; Sharma, Niket ; Liu, Y. A. ; Lee, Youngju ; McDowell, Christopher C.</creator><creatorcontrib>Nguyen, Xuan Dung James ; Sharma, Niket ; Liu, Y. A. ; Lee, Youngju ; McDowell, Christopher C.</creatorcontrib><description>This article presents an application of multiway partial least squares (MPLS) methods to develop interpretative correlation models to monitor the foaming occurrence and improve batch fermentation. We choose the exhaust differential pressure as a quality variable to quantify the foaming occurrence and consider three‐dimensional datasets of different batches, process variables, and measurements. We integrate batch‐wise unfolding (BWU) and observation‐wise unfolding (OWU) of plant datasets with standard, dynamic, and kernel PLS methods. We find that dynamic PLS (DPLS) with OWU and time‐lagged quality variables to be the most efficient, accurate, and easy to implement. The BWU approach is useful for analyzing the differences between batches and identifying abnormalities and outliers, while the OWU quantifies the variation within a given batch. With OWU, the DPLS method with one unit of time lag in the quality variable is the most effective, accurate, and easy to implement. With both BWU and OWU, we identify the quantitative effects of process variables on the quality variable and providence guidance to improve fermentation performance.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.18250</identifier><language>eng</language><publisher>New York: American Institute of Chemical Engineers</publisher><subject>Abnormalities ; Data analysis ; Datasets ; Differential pressure ; Fermentation ; Foaming ; Least squares ; Outliers (statistics) ; Process variables ; Time lag ; Variables</subject><ispartof>AIChE journal, 2023-12, Vol.69 (12)</ispartof><rights>2023 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-ecbbf11360eb67f35a5f010f3cdd36c51544eed76f8c3fef69fa2ccb482ea96d3</citedby><cites>FETCH-LOGICAL-c292t-ecbbf11360eb67f35a5f010f3cdd36c51544eed76f8c3fef69fa2ccb482ea96d3</cites><orcidid>0000-0002-8050-8343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Nguyen, Xuan Dung James</creatorcontrib><creatorcontrib>Sharma, Niket</creatorcontrib><creatorcontrib>Liu, Y. A.</creatorcontrib><creatorcontrib>Lee, Youngju</creatorcontrib><creatorcontrib>McDowell, Christopher C.</creatorcontrib><title>Analyzing the occurrence of foaming in batch fermentation processes using multiway partial least square approaches</title><title>AIChE journal</title><description>This article presents an application of multiway partial least squares (MPLS) methods to develop interpretative correlation models to monitor the foaming occurrence and improve batch fermentation. We choose the exhaust differential pressure as a quality variable to quantify the foaming occurrence and consider three‐dimensional datasets of different batches, process variables, and measurements. We integrate batch‐wise unfolding (BWU) and observation‐wise unfolding (OWU) of plant datasets with standard, dynamic, and kernel PLS methods. We find that dynamic PLS (DPLS) with OWU and time‐lagged quality variables to be the most efficient, accurate, and easy to implement. The BWU approach is useful for analyzing the differences between batches and identifying abnormalities and outliers, while the OWU quantifies the variation within a given batch. With OWU, the DPLS method with one unit of time lag in the quality variable is the most effective, accurate, and easy to implement. With both BWU and OWU, we identify the quantitative effects of process variables on the quality variable and providence guidance to improve fermentation performance.</description><subject>Abnormalities</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Differential pressure</subject><subject>Fermentation</subject><subject>Foaming</subject><subject>Least squares</subject><subject>Outliers (statistics)</subject><subject>Process variables</subject><subject>Time lag</subject><subject>Variables</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkElPwzAQhS0EEmU58A8sceKQ4iXOcqwqNqkSFzhHk8mYpspW2xEqvx6Xcprt0zy9x9idFEsphHqEFpeyUEacsYU0aZ6YUphzthBCyCQu5CW78n4XJ5UXasHcaoDu8NMOXzxsiY-Is3M0YGwttyP0x0s78BoCbrkl19MQILTjwCc3InlPns_-SPVzF9pvOPAJXGih4x2BD9zvZ3DEYYo84Jb8Dbuw0Hm6_a_X7PP56WP9mmzeX97Wq02CqlQhIaxrK6XOBNVZbrUBY4UUVmPT6AxNNJMSNXlmC9SWbFZaUIh1WiiCMmv0Nbs__Y3C-5l8qHbj7KJdX6miVCLVJhORejhR6EbvHdlqcm0P7lBJUR0jrWKk1V-k-heANmy-</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Nguyen, Xuan Dung James</creator><creator>Sharma, Niket</creator><creator>Liu, Y. A.</creator><creator>Lee, Youngju</creator><creator>McDowell, Christopher C.</creator><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8050-8343</orcidid></search><sort><creationdate>20231201</creationdate><title>Analyzing the occurrence of foaming in batch fermentation processes using multiway partial least square approaches</title><author>Nguyen, Xuan Dung James ; Sharma, Niket ; Liu, Y. A. ; Lee, Youngju ; McDowell, Christopher C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-ecbbf11360eb67f35a5f010f3cdd36c51544eed76f8c3fef69fa2ccb482ea96d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abnormalities</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Differential pressure</topic><topic>Fermentation</topic><topic>Foaming</topic><topic>Least squares</topic><topic>Outliers (statistics)</topic><topic>Process variables</topic><topic>Time lag</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Xuan Dung James</creatorcontrib><creatorcontrib>Sharma, Niket</creatorcontrib><creatorcontrib>Liu, Y. A.</creatorcontrib><creatorcontrib>Lee, Youngju</creatorcontrib><creatorcontrib>McDowell, Christopher C.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Xuan Dung James</au><au>Sharma, Niket</au><au>Liu, Y. A.</au><au>Lee, Youngju</au><au>McDowell, Christopher C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing the occurrence of foaming in batch fermentation processes using multiway partial least square approaches</atitle><jtitle>AIChE journal</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>69</volume><issue>12</issue><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>This article presents an application of multiway partial least squares (MPLS) methods to develop interpretative correlation models to monitor the foaming occurrence and improve batch fermentation. We choose the exhaust differential pressure as a quality variable to quantify the foaming occurrence and consider three‐dimensional datasets of different batches, process variables, and measurements. We integrate batch‐wise unfolding (BWU) and observation‐wise unfolding (OWU) of plant datasets with standard, dynamic, and kernel PLS methods. We find that dynamic PLS (DPLS) with OWU and time‐lagged quality variables to be the most efficient, accurate, and easy to implement. The BWU approach is useful for analyzing the differences between batches and identifying abnormalities and outliers, while the OWU quantifies the variation within a given batch. With OWU, the DPLS method with one unit of time lag in the quality variable is the most effective, accurate, and easy to implement. With both BWU and OWU, we identify the quantitative effects of process variables on the quality variable and providence guidance to improve fermentation performance.</abstract><cop>New York</cop><pub>American Institute of Chemical Engineers</pub><doi>10.1002/aic.18250</doi><orcidid>https://orcid.org/0000-0002-8050-8343</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2023-12, Vol.69 (12)
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_journals_2892043560
source Wiley Online Library Journals Frontfile Complete
subjects Abnormalities
Data analysis
Datasets
Differential pressure
Fermentation
Foaming
Least squares
Outliers (statistics)
Process variables
Time lag
Variables
title Analyzing the occurrence of foaming in batch fermentation processes using multiway partial least square approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A48%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20the%20occurrence%20of%20foaming%20in%20batch%20fermentation%20processes%20using%20multiway%20partial%20least%20square%20approaches&rft.jtitle=AIChE%20journal&rft.au=Nguyen,%20Xuan%20Dung%20James&rft.date=2023-12-01&rft.volume=69&rft.issue=12&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.18250&rft_dat=%3Cproquest_cross%3E2892043560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892043560&rft_id=info:pmid/&rfr_iscdi=true