Analyzing the occurrence of foaming in batch fermentation processes using multiway partial least square approaches
This article presents an application of multiway partial least squares (MPLS) methods to develop interpretative correlation models to monitor the foaming occurrence and improve batch fermentation. We choose the exhaust differential pressure as a quality variable to quantify the foaming occurrence an...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2023-12, Vol.69 (12) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | AIChE journal |
container_volume | 69 |
creator | Nguyen, Xuan Dung James Sharma, Niket Liu, Y. A. Lee, Youngju McDowell, Christopher C. |
description | This article presents an application of multiway partial least squares (MPLS) methods to develop interpretative correlation models to monitor the foaming occurrence and improve batch fermentation. We choose the exhaust differential pressure as a quality variable to quantify the foaming occurrence and consider three‐dimensional datasets of different batches, process variables, and measurements. We integrate batch‐wise unfolding (BWU) and observation‐wise unfolding (OWU) of plant datasets with standard, dynamic, and kernel PLS methods. We find that dynamic PLS (DPLS) with OWU and time‐lagged quality variables to be the most efficient, accurate, and easy to implement. The BWU approach is useful for analyzing the differences between batches and identifying abnormalities and outliers, while the OWU quantifies the variation within a given batch. With OWU, the DPLS method with one unit of time lag in the quality variable is the most effective, accurate, and easy to implement. With both BWU and OWU, we identify the quantitative effects of process variables on the quality variable and providence guidance to improve fermentation performance. |
doi_str_mv | 10.1002/aic.18250 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2892043560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892043560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-ecbbf11360eb67f35a5f010f3cdd36c51544eed76f8c3fef69fa2ccb482ea96d3</originalsourceid><addsrcrecordid>eNotkElPwzAQhS0EEmU58A8sceKQ4iXOcqwqNqkSFzhHk8mYpspW2xEqvx6Xcprt0zy9x9idFEsphHqEFpeyUEacsYU0aZ6YUphzthBCyCQu5CW78n4XJ5UXasHcaoDu8NMOXzxsiY-Is3M0YGwttyP0x0s78BoCbrkl19MQILTjwCc3InlPns_-SPVzF9pvOPAJXGih4x2BD9zvZ3DEYYo84Jb8Dbuw0Hm6_a_X7PP56WP9mmzeX97Wq02CqlQhIaxrK6XOBNVZbrUBY4UUVmPT6AxNNJMSNXlmC9SWbFZaUIh1WiiCMmv0Nbs__Y3C-5l8qHbj7KJdX6miVCLVJhORejhR6EbvHdlqcm0P7lBJUR0jrWKk1V-k-heANmy-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892043560</pqid></control><display><type>article</type><title>Analyzing the occurrence of foaming in batch fermentation processes using multiway partial least square approaches</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nguyen, Xuan Dung James ; Sharma, Niket ; Liu, Y. A. ; Lee, Youngju ; McDowell, Christopher C.</creator><creatorcontrib>Nguyen, Xuan Dung James ; Sharma, Niket ; Liu, Y. A. ; Lee, Youngju ; McDowell, Christopher C.</creatorcontrib><description>This article presents an application of multiway partial least squares (MPLS) methods to develop interpretative correlation models to monitor the foaming occurrence and improve batch fermentation. We choose the exhaust differential pressure as a quality variable to quantify the foaming occurrence and consider three‐dimensional datasets of different batches, process variables, and measurements. We integrate batch‐wise unfolding (BWU) and observation‐wise unfolding (OWU) of plant datasets with standard, dynamic, and kernel PLS methods. We find that dynamic PLS (DPLS) with OWU and time‐lagged quality variables to be the most efficient, accurate, and easy to implement. The BWU approach is useful for analyzing the differences between batches and identifying abnormalities and outliers, while the OWU quantifies the variation within a given batch. With OWU, the DPLS method with one unit of time lag in the quality variable is the most effective, accurate, and easy to implement. With both BWU and OWU, we identify the quantitative effects of process variables on the quality variable and providence guidance to improve fermentation performance.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.18250</identifier><language>eng</language><publisher>New York: American Institute of Chemical Engineers</publisher><subject>Abnormalities ; Data analysis ; Datasets ; Differential pressure ; Fermentation ; Foaming ; Least squares ; Outliers (statistics) ; Process variables ; Time lag ; Variables</subject><ispartof>AIChE journal, 2023-12, Vol.69 (12)</ispartof><rights>2023 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-ecbbf11360eb67f35a5f010f3cdd36c51544eed76f8c3fef69fa2ccb482ea96d3</citedby><cites>FETCH-LOGICAL-c292t-ecbbf11360eb67f35a5f010f3cdd36c51544eed76f8c3fef69fa2ccb482ea96d3</cites><orcidid>0000-0002-8050-8343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Nguyen, Xuan Dung James</creatorcontrib><creatorcontrib>Sharma, Niket</creatorcontrib><creatorcontrib>Liu, Y. A.</creatorcontrib><creatorcontrib>Lee, Youngju</creatorcontrib><creatorcontrib>McDowell, Christopher C.</creatorcontrib><title>Analyzing the occurrence of foaming in batch fermentation processes using multiway partial least square approaches</title><title>AIChE journal</title><description>This article presents an application of multiway partial least squares (MPLS) methods to develop interpretative correlation models to monitor the foaming occurrence and improve batch fermentation. We choose the exhaust differential pressure as a quality variable to quantify the foaming occurrence and consider three‐dimensional datasets of different batches, process variables, and measurements. We integrate batch‐wise unfolding (BWU) and observation‐wise unfolding (OWU) of plant datasets with standard, dynamic, and kernel PLS methods. We find that dynamic PLS (DPLS) with OWU and time‐lagged quality variables to be the most efficient, accurate, and easy to implement. The BWU approach is useful for analyzing the differences between batches and identifying abnormalities and outliers, while the OWU quantifies the variation within a given batch. With OWU, the DPLS method with one unit of time lag in the quality variable is the most effective, accurate, and easy to implement. With both BWU and OWU, we identify the quantitative effects of process variables on the quality variable and providence guidance to improve fermentation performance.</description><subject>Abnormalities</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Differential pressure</subject><subject>Fermentation</subject><subject>Foaming</subject><subject>Least squares</subject><subject>Outliers (statistics)</subject><subject>Process variables</subject><subject>Time lag</subject><subject>Variables</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkElPwzAQhS0EEmU58A8sceKQ4iXOcqwqNqkSFzhHk8mYpspW2xEqvx6Xcprt0zy9x9idFEsphHqEFpeyUEacsYU0aZ6YUphzthBCyCQu5CW78n4XJ5UXasHcaoDu8NMOXzxsiY-Is3M0YGwttyP0x0s78BoCbrkl19MQILTjwCc3InlPns_-SPVzF9pvOPAJXGih4x2BD9zvZ3DEYYo84Jb8Dbuw0Hm6_a_X7PP56WP9mmzeX97Wq02CqlQhIaxrK6XOBNVZbrUBY4UUVmPT6AxNNJMSNXlmC9SWbFZaUIh1WiiCMmv0Nbs__Y3C-5l8qHbj7KJdX6miVCLVJhORejhR6EbvHdlqcm0P7lBJUR0jrWKk1V-k-heANmy-</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Nguyen, Xuan Dung James</creator><creator>Sharma, Niket</creator><creator>Liu, Y. A.</creator><creator>Lee, Youngju</creator><creator>McDowell, Christopher C.</creator><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8050-8343</orcidid></search><sort><creationdate>20231201</creationdate><title>Analyzing the occurrence of foaming in batch fermentation processes using multiway partial least square approaches</title><author>Nguyen, Xuan Dung James ; Sharma, Niket ; Liu, Y. A. ; Lee, Youngju ; McDowell, Christopher C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-ecbbf11360eb67f35a5f010f3cdd36c51544eed76f8c3fef69fa2ccb482ea96d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abnormalities</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Differential pressure</topic><topic>Fermentation</topic><topic>Foaming</topic><topic>Least squares</topic><topic>Outliers (statistics)</topic><topic>Process variables</topic><topic>Time lag</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Xuan Dung James</creatorcontrib><creatorcontrib>Sharma, Niket</creatorcontrib><creatorcontrib>Liu, Y. A.</creatorcontrib><creatorcontrib>Lee, Youngju</creatorcontrib><creatorcontrib>McDowell, Christopher C.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Xuan Dung James</au><au>Sharma, Niket</au><au>Liu, Y. A.</au><au>Lee, Youngju</au><au>McDowell, Christopher C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing the occurrence of foaming in batch fermentation processes using multiway partial least square approaches</atitle><jtitle>AIChE journal</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>69</volume><issue>12</issue><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>This article presents an application of multiway partial least squares (MPLS) methods to develop interpretative correlation models to monitor the foaming occurrence and improve batch fermentation. We choose the exhaust differential pressure as a quality variable to quantify the foaming occurrence and consider three‐dimensional datasets of different batches, process variables, and measurements. We integrate batch‐wise unfolding (BWU) and observation‐wise unfolding (OWU) of plant datasets with standard, dynamic, and kernel PLS methods. We find that dynamic PLS (DPLS) with OWU and time‐lagged quality variables to be the most efficient, accurate, and easy to implement. The BWU approach is useful for analyzing the differences between batches and identifying abnormalities and outliers, while the OWU quantifies the variation within a given batch. With OWU, the DPLS method with one unit of time lag in the quality variable is the most effective, accurate, and easy to implement. With both BWU and OWU, we identify the quantitative effects of process variables on the quality variable and providence guidance to improve fermentation performance.</abstract><cop>New York</cop><pub>American Institute of Chemical Engineers</pub><doi>10.1002/aic.18250</doi><orcidid>https://orcid.org/0000-0002-8050-8343</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2023-12, Vol.69 (12) |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_journals_2892043560 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Abnormalities Data analysis Datasets Differential pressure Fermentation Foaming Least squares Outliers (statistics) Process variables Time lag Variables |
title | Analyzing the occurrence of foaming in batch fermentation processes using multiway partial least square approaches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A48%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20the%20occurrence%20of%20foaming%20in%20batch%20fermentation%20processes%20using%20multiway%20partial%20least%20square%20approaches&rft.jtitle=AIChE%20journal&rft.au=Nguyen,%20Xuan%20Dung%20James&rft.date=2023-12-01&rft.volume=69&rft.issue=12&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.18250&rft_dat=%3Cproquest_cross%3E2892043560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892043560&rft_id=info:pmid/&rfr_iscdi=true |