Degradation Behavior of MgO-Based Refractory by CaO-SiO2-Al2O3-MgO-TiO2 System Ladle Slags

To understand the effect of TiO 2 in CaO-SiO 2 -Al 2 O 3 -MgO-TiO 2 system ladle refining slags on the degradation of MgO-based refractories, laboratory experiments were carried out to study the dissolution behaviors of MgO refractories into the slags and the penetration behaviors of the slags into...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2023-12, Vol.54 (6), p.3203-3215
Hauptverfasser: Hao, Guangyu, Deng, Zhiyin, Wei, Chunxin, Zhu, Miaoyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3215
container_issue 6
container_start_page 3203
container_title Metallurgical and materials transactions. B, Process metallurgy and materials processing science
container_volume 54
creator Hao, Guangyu
Deng, Zhiyin
Wei, Chunxin
Zhu, Miaoyong
description To understand the effect of TiO 2 in CaO-SiO 2 -Al 2 O 3 -MgO-TiO 2 system ladle refining slags on the degradation of MgO-based refractories, laboratory experiments were carried out to study the dissolution behaviors of MgO refractories into the slags and the penetration behaviors of the slags into the refractories. It was found that adding TiO 2 (0 to 10 pct) increases the solubility of MgO in the slags, thus the dissolution of MgO refractories into the slags was enhanced by TiO 2 . Meanwhile, TiO 2 also influences the physical properties of the slags. With the increase of TiO 2 content, the viscosity and the surface tension of the slags decrease first and increase, and the contact angle between the slags and MgO refractory changes oppositely. The depth of slag penetration into the refractory increases first and then decreases as well. TiO 2 in refining slags is very likely to accelerate the degradation of MgO refractory, while suitable MgO content in the slags can weaken this effect of TiO 2 . Besides, a denser refractory material is also beneficial to resist the degradation of the refractory.
doi_str_mv 10.1007/s11663-023-02901-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2891931511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2891931511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-aca3aaf2686d386132fd7334b11c7017393c8fe5b2b85c95f4bf5c763a19fb1b3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAczSTabKbY1s_obJg68VLyO4m65a2q8lW2H_v1hW8eRhmBp53Bh5CLoFfA-fJTQRQChkXh9IcmDoiI5ATZKBBHfczT5BJBfKUnMW45pwrrXFE3m5dFWxp27rZ0Zl7t191E2jj6XOVsZmNrqQvzgdbtE3oaN7Ruc3Yss4Em25EhuyArfqVLrvYui1d2HLj6HJjq3hOTrzdRHfx28fk9f5uNX9ki-zhaT5dsAJBt8wWFq31QqWqxFQBCl8miJMcoEg4JKixSL2TuchTWWjpJ7mXRaLQgvY55DgmV8Pdj9B87l1szbrZh13_0ohUg0aQAD0lBqoITYzBefMR6q0NnQFuDg7N4ND0Ds2PQ6P6EA6h2MO7yoW_0_-kvgHyCHGP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891931511</pqid></control><display><type>article</type><title>Degradation Behavior of MgO-Based Refractory by CaO-SiO2-Al2O3-MgO-TiO2 System Ladle Slags</title><source>Springer Nature - Complete Springer Journals</source><creator>Hao, Guangyu ; Deng, Zhiyin ; Wei, Chunxin ; Zhu, Miaoyong</creator><creatorcontrib>Hao, Guangyu ; Deng, Zhiyin ; Wei, Chunxin ; Zhu, Miaoyong</creatorcontrib><description>To understand the effect of TiO 2 in CaO-SiO 2 -Al 2 O 3 -MgO-TiO 2 system ladle refining slags on the degradation of MgO-based refractories, laboratory experiments were carried out to study the dissolution behaviors of MgO refractories into the slags and the penetration behaviors of the slags into the refractories. It was found that adding TiO 2 (0 to 10 pct) increases the solubility of MgO in the slags, thus the dissolution of MgO refractories into the slags was enhanced by TiO 2 . Meanwhile, TiO 2 also influences the physical properties of the slags. With the increase of TiO 2 content, the viscosity and the surface tension of the slags decrease first and increase, and the contact angle between the slags and MgO refractory changes oppositely. The depth of slag penetration into the refractory increases first and then decreases as well. TiO 2 in refining slags is very likely to accelerate the degradation of MgO refractory, while suitable MgO content in the slags can weaken this effect of TiO 2 . Besides, a denser refractory material is also beneficial to resist the degradation of the refractory.</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/s11663-023-02901-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum oxide ; Calcium oxide ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Contact angle ; Degradation ; Dissolution ; Magnesium oxide ; Materials Science ; Metallic Materials ; Nanotechnology ; Original Research Article ; Physical properties ; Refractories ; Silicon dioxide ; Slag ; Structural Materials ; Surface tension ; Surfaces and Interfaces ; Thin Films ; Titanium dioxide</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2023-12, Vol.54 (6), p.3203-3215</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-aca3aaf2686d386132fd7334b11c7017393c8fe5b2b85c95f4bf5c763a19fb1b3</citedby><cites>FETCH-LOGICAL-c319t-aca3aaf2686d386132fd7334b11c7017393c8fe5b2b85c95f4bf5c763a19fb1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11663-023-02901-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11663-023-02901-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hao, Guangyu</creatorcontrib><creatorcontrib>Deng, Zhiyin</creatorcontrib><creatorcontrib>Wei, Chunxin</creatorcontrib><creatorcontrib>Zhu, Miaoyong</creatorcontrib><title>Degradation Behavior of MgO-Based Refractory by CaO-SiO2-Al2O3-MgO-TiO2 System Ladle Slags</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><addtitle>Metall Mater Trans B</addtitle><description>To understand the effect of TiO 2 in CaO-SiO 2 -Al 2 O 3 -MgO-TiO 2 system ladle refining slags on the degradation of MgO-based refractories, laboratory experiments were carried out to study the dissolution behaviors of MgO refractories into the slags and the penetration behaviors of the slags into the refractories. It was found that adding TiO 2 (0 to 10 pct) increases the solubility of MgO in the slags, thus the dissolution of MgO refractories into the slags was enhanced by TiO 2 . Meanwhile, TiO 2 also influences the physical properties of the slags. With the increase of TiO 2 content, the viscosity and the surface tension of the slags decrease first and increase, and the contact angle between the slags and MgO refractory changes oppositely. The depth of slag penetration into the refractory increases first and then decreases as well. TiO 2 in refining slags is very likely to accelerate the degradation of MgO refractory, while suitable MgO content in the slags can weaken this effect of TiO 2 . Besides, a denser refractory material is also beneficial to resist the degradation of the refractory.</description><subject>Aluminum oxide</subject><subject>Calcium oxide</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Contact angle</subject><subject>Degradation</subject><subject>Dissolution</subject><subject>Magnesium oxide</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanotechnology</subject><subject>Original Research Article</subject><subject>Physical properties</subject><subject>Refractories</subject><subject>Silicon dioxide</subject><subject>Slag</subject><subject>Structural Materials</subject><subject>Surface tension</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Titanium dioxide</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAczSTabKbY1s_obJg68VLyO4m65a2q8lW2H_v1hW8eRhmBp53Bh5CLoFfA-fJTQRQChkXh9IcmDoiI5ATZKBBHfczT5BJBfKUnMW45pwrrXFE3m5dFWxp27rZ0Zl7t191E2jj6XOVsZmNrqQvzgdbtE3oaN7Ruc3Yss4Em25EhuyArfqVLrvYui1d2HLj6HJjq3hOTrzdRHfx28fk9f5uNX9ki-zhaT5dsAJBt8wWFq31QqWqxFQBCl8miJMcoEg4JKixSL2TuchTWWjpJ7mXRaLQgvY55DgmV8Pdj9B87l1szbrZh13_0ohUg0aQAD0lBqoITYzBefMR6q0NnQFuDg7N4ND0Ds2PQ6P6EA6h2MO7yoW_0_-kvgHyCHGP</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Hao, Guangyu</creator><creator>Deng, Zhiyin</creator><creator>Wei, Chunxin</creator><creator>Zhu, Miaoyong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20231201</creationdate><title>Degradation Behavior of MgO-Based Refractory by CaO-SiO2-Al2O3-MgO-TiO2 System Ladle Slags</title><author>Hao, Guangyu ; Deng, Zhiyin ; Wei, Chunxin ; Zhu, Miaoyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-aca3aaf2686d386132fd7334b11c7017393c8fe5b2b85c95f4bf5c763a19fb1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum oxide</topic><topic>Calcium oxide</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Contact angle</topic><topic>Degradation</topic><topic>Dissolution</topic><topic>Magnesium oxide</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanotechnology</topic><topic>Original Research Article</topic><topic>Physical properties</topic><topic>Refractories</topic><topic>Silicon dioxide</topic><topic>Slag</topic><topic>Structural Materials</topic><topic>Surface tension</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Guangyu</creatorcontrib><creatorcontrib>Deng, Zhiyin</creatorcontrib><creatorcontrib>Wei, Chunxin</creatorcontrib><creatorcontrib>Zhu, Miaoyong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Guangyu</au><au>Deng, Zhiyin</au><au>Wei, Chunxin</au><au>Zhu, Miaoyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Degradation Behavior of MgO-Based Refractory by CaO-SiO2-Al2O3-MgO-TiO2 System Ladle Slags</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><stitle>Metall Mater Trans B</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>54</volume><issue>6</issue><spage>3203</spage><epage>3215</epage><pages>3203-3215</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><abstract>To understand the effect of TiO 2 in CaO-SiO 2 -Al 2 O 3 -MgO-TiO 2 system ladle refining slags on the degradation of MgO-based refractories, laboratory experiments were carried out to study the dissolution behaviors of MgO refractories into the slags and the penetration behaviors of the slags into the refractories. It was found that adding TiO 2 (0 to 10 pct) increases the solubility of MgO in the slags, thus the dissolution of MgO refractories into the slags was enhanced by TiO 2 . Meanwhile, TiO 2 also influences the physical properties of the slags. With the increase of TiO 2 content, the viscosity and the surface tension of the slags decrease first and increase, and the contact angle between the slags and MgO refractory changes oppositely. The depth of slag penetration into the refractory increases first and then decreases as well. TiO 2 in refining slags is very likely to accelerate the degradation of MgO refractory, while suitable MgO content in the slags can weaken this effect of TiO 2 . Besides, a denser refractory material is also beneficial to resist the degradation of the refractory.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11663-023-02901-6</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5615
ispartof Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2023-12, Vol.54 (6), p.3203-3215
issn 1073-5615
1543-1916
language eng
recordid cdi_proquest_journals_2891931511
source Springer Nature - Complete Springer Journals
subjects Aluminum oxide
Calcium oxide
Characterization and Evaluation of Materials
Chemistry and Materials Science
Contact angle
Degradation
Dissolution
Magnesium oxide
Materials Science
Metallic Materials
Nanotechnology
Original Research Article
Physical properties
Refractories
Silicon dioxide
Slag
Structural Materials
Surface tension
Surfaces and Interfaces
Thin Films
Titanium dioxide
title Degradation Behavior of MgO-Based Refractory by CaO-SiO2-Al2O3-MgO-TiO2 System Ladle Slags
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A00%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Degradation%20Behavior%20of%20MgO-Based%20Refractory%20by%20CaO-SiO2-Al2O3-MgO-TiO2%20System%20Ladle%20Slags&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=Hao,%20Guangyu&rft.date=2023-12-01&rft.volume=54&rft.issue=6&rft.spage=3203&rft.epage=3215&rft.pages=3203-3215&rft.issn=1073-5615&rft.eissn=1543-1916&rft_id=info:doi/10.1007/s11663-023-02901-6&rft_dat=%3Cproquest_cross%3E2891931511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2891931511&rft_id=info:pmid/&rfr_iscdi=true