An Ensemble of Deep Convolutional Neural Networks Models for Facial Beauty Prediction

Facial beauty prediction is an emerging topic. The pursuit of facial beauty is the nature of human beings. As the demand for aesthetic surgery has increased significantly over the past few years, an understanding beauty is becoming increasingly important in medical settings. This work proposes a new...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advanced computational intelligence and intelligent informatics 2023-11, Vol.27 (6), p.1209-1215
Hauptverfasser: Boukhari, Djamel Eddine, Chemsa, Ali, Ajgou, Riadh, Bouzaher, Mohamed Taher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1215
container_issue 6
container_start_page 1209
container_title Journal of advanced computational intelligence and intelligent informatics
container_volume 27
creator Boukhari, Djamel Eddine
Chemsa, Ali
Ajgou, Riadh
Bouzaher, Mohamed Taher
description Facial beauty prediction is an emerging topic. The pursuit of facial beauty is the nature of human beings. As the demand for aesthetic surgery has increased significantly over the past few years, an understanding beauty is becoming increasingly important in medical settings. This work proposes a new ensemble based on the pre-trained convolutional neural network (CNN) models to identify scores for facial beauty prediction. These ensembles were originally built from the following previously trained models: DenseNet-201, Inception-v3, MobileNetV2, and EfficientNetB7. According to the SCUT-FBP5500 benchmark dataset, the proposed model obtains a Pearson coefficient of 0.9469. This reveals that the suggested EN-CNNs model can be successfully applied in a variety of face-to-face applications.
doi_str_mv 10.20965/jaciii.2023.p1209
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2891446393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2891446393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-fbbfa22c71410224bd4e2c53f72611fcfdb597cd1e3998eeb282213c2c2851203</originalsourceid><addsrcrecordid>eNotUMtOwzAQtBBIVKU_wMkS5xR77STOsZQWkMrjQM9W4qyllDQOdgLq3-O2nGZ2d_Y1hNxyNgdWZOn9rjRN08QAxLznMXdBJlwpkSjG5WXkQoqEccGuySyEHWORQ8Ykn5DtoqOrLuC-apE6Sx8Re7p03Y9rx6FxXdnSNxz9CYZf578CfXU1toFa5-k6Lo6lByzH4UA_PNaNOXbdkCtbtgFn_zgl2_Xqc_mcbN6fXpaLTWIksCGxVWVLAJNzyRmArGqJYFJhc8g4t8bWVVrkpuYoikIhVqAAuDBgQKXxTzEld-e5vXffI4ZB79zo49FBgyq4lJkoRFTBWWW8C8Gj1b1v9qU_aM70yUF9dlAfHdQnB8Ufw3Nk6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891446393</pqid></control><display><type>article</type><title>An Ensemble of Deep Convolutional Neural Networks Models for Facial Beauty Prediction</title><source>DOAJ Directory of Open Access Journals</source><creator>Boukhari, Djamel Eddine ; Chemsa, Ali ; Ajgou, Riadh ; Bouzaher, Mohamed Taher</creator><creatorcontrib>Boukhari, Djamel Eddine ; Chemsa, Ali ; Ajgou, Riadh ; Bouzaher, Mohamed Taher</creatorcontrib><description>Facial beauty prediction is an emerging topic. The pursuit of facial beauty is the nature of human beings. As the demand for aesthetic surgery has increased significantly over the past few years, an understanding beauty is becoming increasingly important in medical settings. This work proposes a new ensemble based on the pre-trained convolutional neural network (CNN) models to identify scores for facial beauty prediction. These ensembles were originally built from the following previously trained models: DenseNet-201, Inception-v3, MobileNetV2, and EfficientNetB7. According to the SCUT-FBP5500 benchmark dataset, the proposed model obtains a Pearson coefficient of 0.9469. This reveals that the suggested EN-CNNs model can be successfully applied in a variety of face-to-face applications.</description><identifier>ISSN: 1343-0130</identifier><identifier>EISSN: 1883-8014</identifier><identifier>DOI: 10.20965/jaciii.2023.p1209</identifier><language>eng</language><publisher>Tokyo: Fuji Technology Press Co. Ltd</publisher><subject>Artificial neural networks ; Beauty ; Datasets ; Deep learning ; Neural networks</subject><ispartof>Journal of advanced computational intelligence and intelligent informatics, 2023-11, Vol.27 (6), p.1209-1215</ispartof><rights>Copyright © 2023 Fuji Technology Press Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c420t-fbbfa22c71410224bd4e2c53f72611fcfdb597cd1e3998eeb282213c2c2851203</cites><orcidid>0000-0001-5142-7643 ; 0000-0002-2170-5881 ; 0000-0002-9219-1320 ; 0000-0001-7209-7516</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Boukhari, Djamel Eddine</creatorcontrib><creatorcontrib>Chemsa, Ali</creatorcontrib><creatorcontrib>Ajgou, Riadh</creatorcontrib><creatorcontrib>Bouzaher, Mohamed Taher</creatorcontrib><title>An Ensemble of Deep Convolutional Neural Networks Models for Facial Beauty Prediction</title><title>Journal of advanced computational intelligence and intelligent informatics</title><description>Facial beauty prediction is an emerging topic. The pursuit of facial beauty is the nature of human beings. As the demand for aesthetic surgery has increased significantly over the past few years, an understanding beauty is becoming increasingly important in medical settings. This work proposes a new ensemble based on the pre-trained convolutional neural network (CNN) models to identify scores for facial beauty prediction. These ensembles were originally built from the following previously trained models: DenseNet-201, Inception-v3, MobileNetV2, and EfficientNetB7. According to the SCUT-FBP5500 benchmark dataset, the proposed model obtains a Pearson coefficient of 0.9469. This reveals that the suggested EN-CNNs model can be successfully applied in a variety of face-to-face applications.</description><subject>Artificial neural networks</subject><subject>Beauty</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Neural networks</subject><issn>1343-0130</issn><issn>1883-8014</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotUMtOwzAQtBBIVKU_wMkS5xR77STOsZQWkMrjQM9W4qyllDQOdgLq3-O2nGZ2d_Y1hNxyNgdWZOn9rjRN08QAxLznMXdBJlwpkSjG5WXkQoqEccGuySyEHWORQ8Ykn5DtoqOrLuC-apE6Sx8Re7p03Y9rx6FxXdnSNxz9CYZf578CfXU1toFa5-k6Lo6lByzH4UA_PNaNOXbdkCtbtgFn_zgl2_Xqc_mcbN6fXpaLTWIksCGxVWVLAJNzyRmArGqJYFJhc8g4t8bWVVrkpuYoikIhVqAAuDBgQKXxTzEld-e5vXffI4ZB79zo49FBgyq4lJkoRFTBWWW8C8Gj1b1v9qU_aM70yUF9dlAfHdQnB8Ufw3Nk6Q</recordid><startdate>20231120</startdate><enddate>20231120</enddate><creator>Boukhari, Djamel Eddine</creator><creator>Chemsa, Ali</creator><creator>Ajgou, Riadh</creator><creator>Bouzaher, Mohamed Taher</creator><general>Fuji Technology Press Co. Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-5142-7643</orcidid><orcidid>https://orcid.org/0000-0002-2170-5881</orcidid><orcidid>https://orcid.org/0000-0002-9219-1320</orcidid><orcidid>https://orcid.org/0000-0001-7209-7516</orcidid></search><sort><creationdate>20231120</creationdate><title>An Ensemble of Deep Convolutional Neural Networks Models for Facial Beauty Prediction</title><author>Boukhari, Djamel Eddine ; Chemsa, Ali ; Ajgou, Riadh ; Bouzaher, Mohamed Taher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-fbbfa22c71410224bd4e2c53f72611fcfdb597cd1e3998eeb282213c2c2851203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Beauty</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boukhari, Djamel Eddine</creatorcontrib><creatorcontrib>Chemsa, Ali</creatorcontrib><creatorcontrib>Ajgou, Riadh</creatorcontrib><creatorcontrib>Bouzaher, Mohamed Taher</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of advanced computational intelligence and intelligent informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boukhari, Djamel Eddine</au><au>Chemsa, Ali</au><au>Ajgou, Riadh</au><au>Bouzaher, Mohamed Taher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Ensemble of Deep Convolutional Neural Networks Models for Facial Beauty Prediction</atitle><jtitle>Journal of advanced computational intelligence and intelligent informatics</jtitle><date>2023-11-20</date><risdate>2023</risdate><volume>27</volume><issue>6</issue><spage>1209</spage><epage>1215</epage><pages>1209-1215</pages><issn>1343-0130</issn><eissn>1883-8014</eissn><abstract>Facial beauty prediction is an emerging topic. The pursuit of facial beauty is the nature of human beings. As the demand for aesthetic surgery has increased significantly over the past few years, an understanding beauty is becoming increasingly important in medical settings. This work proposes a new ensemble based on the pre-trained convolutional neural network (CNN) models to identify scores for facial beauty prediction. These ensembles were originally built from the following previously trained models: DenseNet-201, Inception-v3, MobileNetV2, and EfficientNetB7. According to the SCUT-FBP5500 benchmark dataset, the proposed model obtains a Pearson coefficient of 0.9469. This reveals that the suggested EN-CNNs model can be successfully applied in a variety of face-to-face applications.</abstract><cop>Tokyo</cop><pub>Fuji Technology Press Co. Ltd</pub><doi>10.20965/jaciii.2023.p1209</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5142-7643</orcidid><orcidid>https://orcid.org/0000-0002-2170-5881</orcidid><orcidid>https://orcid.org/0000-0002-9219-1320</orcidid><orcidid>https://orcid.org/0000-0001-7209-7516</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1343-0130
ispartof Journal of advanced computational intelligence and intelligent informatics, 2023-11, Vol.27 (6), p.1209-1215
issn 1343-0130
1883-8014
language eng
recordid cdi_proquest_journals_2891446393
source DOAJ Directory of Open Access Journals
subjects Artificial neural networks
Beauty
Datasets
Deep learning
Neural networks
title An Ensemble of Deep Convolutional Neural Networks Models for Facial Beauty Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A54%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Ensemble%20of%20Deep%20Convolutional%20Neural%20Networks%20Models%20for%20Facial%20Beauty%20Prediction&rft.jtitle=Journal%20of%20advanced%20computational%20intelligence%20and%20intelligent%20informatics&rft.au=Boukhari,%20Djamel%20Eddine&rft.date=2023-11-20&rft.volume=27&rft.issue=6&rft.spage=1209&rft.epage=1215&rft.pages=1209-1215&rft.issn=1343-0130&rft.eissn=1883-8014&rft_id=info:doi/10.20965/jaciii.2023.p1209&rft_dat=%3Cproquest_cross%3E2891446393%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2891446393&rft_id=info:pmid/&rfr_iscdi=true