An Ensemble of Deep Convolutional Neural Networks Models for Facial Beauty Prediction
Facial beauty prediction is an emerging topic. The pursuit of facial beauty is the nature of human beings. As the demand for aesthetic surgery has increased significantly over the past few years, an understanding beauty is becoming increasingly important in medical settings. This work proposes a new...
Gespeichert in:
Veröffentlicht in: | Journal of advanced computational intelligence and intelligent informatics 2023-11, Vol.27 (6), p.1209-1215 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1215 |
---|---|
container_issue | 6 |
container_start_page | 1209 |
container_title | Journal of advanced computational intelligence and intelligent informatics |
container_volume | 27 |
creator | Boukhari, Djamel Eddine Chemsa, Ali Ajgou, Riadh Bouzaher, Mohamed Taher |
description | Facial beauty prediction is an emerging topic. The pursuit of facial beauty is the nature of human beings. As the demand for aesthetic surgery has increased significantly over the past few years, an understanding beauty is becoming increasingly important in medical settings. This work proposes a new ensemble based on the pre-trained convolutional neural network (CNN) models to identify scores for facial beauty prediction. These ensembles were originally built from the following previously trained models: DenseNet-201, Inception-v3, MobileNetV2, and EfficientNetB7. According to the SCUT-FBP5500 benchmark dataset, the proposed model obtains a Pearson coefficient of 0.9469. This reveals that the suggested EN-CNNs model can be successfully applied in a variety of face-to-face applications. |
doi_str_mv | 10.20965/jaciii.2023.p1209 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2891446393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2891446393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-fbbfa22c71410224bd4e2c53f72611fcfdb597cd1e3998eeb282213c2c2851203</originalsourceid><addsrcrecordid>eNotUMtOwzAQtBBIVKU_wMkS5xR77STOsZQWkMrjQM9W4qyllDQOdgLq3-O2nGZ2d_Y1hNxyNgdWZOn9rjRN08QAxLznMXdBJlwpkSjG5WXkQoqEccGuySyEHWORQ8Ykn5DtoqOrLuC-apE6Sx8Re7p03Y9rx6FxXdnSNxz9CYZf578CfXU1toFa5-k6Lo6lByzH4UA_PNaNOXbdkCtbtgFn_zgl2_Xqc_mcbN6fXpaLTWIksCGxVWVLAJNzyRmArGqJYFJhc8g4t8bWVVrkpuYoikIhVqAAuDBgQKXxTzEld-e5vXffI4ZB79zo49FBgyq4lJkoRFTBWWW8C8Gj1b1v9qU_aM70yUF9dlAfHdQnB8Ufw3Nk6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891446393</pqid></control><display><type>article</type><title>An Ensemble of Deep Convolutional Neural Networks Models for Facial Beauty Prediction</title><source>DOAJ Directory of Open Access Journals</source><creator>Boukhari, Djamel Eddine ; Chemsa, Ali ; Ajgou, Riadh ; Bouzaher, Mohamed Taher</creator><creatorcontrib>Boukhari, Djamel Eddine ; Chemsa, Ali ; Ajgou, Riadh ; Bouzaher, Mohamed Taher</creatorcontrib><description>Facial beauty prediction is an emerging topic. The pursuit of facial beauty is the nature of human beings. As the demand for aesthetic surgery has increased significantly over the past few years, an understanding beauty is becoming increasingly important in medical settings. This work proposes a new ensemble based on the pre-trained convolutional neural network (CNN) models to identify scores for facial beauty prediction. These ensembles were originally built from the following previously trained models: DenseNet-201, Inception-v3, MobileNetV2, and EfficientNetB7. According to the SCUT-FBP5500 benchmark dataset, the proposed model obtains a Pearson coefficient of 0.9469. This reveals that the suggested EN-CNNs model can be successfully applied in a variety of face-to-face applications.</description><identifier>ISSN: 1343-0130</identifier><identifier>EISSN: 1883-8014</identifier><identifier>DOI: 10.20965/jaciii.2023.p1209</identifier><language>eng</language><publisher>Tokyo: Fuji Technology Press Co. Ltd</publisher><subject>Artificial neural networks ; Beauty ; Datasets ; Deep learning ; Neural networks</subject><ispartof>Journal of advanced computational intelligence and intelligent informatics, 2023-11, Vol.27 (6), p.1209-1215</ispartof><rights>Copyright © 2023 Fuji Technology Press Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c420t-fbbfa22c71410224bd4e2c53f72611fcfdb597cd1e3998eeb282213c2c2851203</cites><orcidid>0000-0001-5142-7643 ; 0000-0002-2170-5881 ; 0000-0002-9219-1320 ; 0000-0001-7209-7516</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Boukhari, Djamel Eddine</creatorcontrib><creatorcontrib>Chemsa, Ali</creatorcontrib><creatorcontrib>Ajgou, Riadh</creatorcontrib><creatorcontrib>Bouzaher, Mohamed Taher</creatorcontrib><title>An Ensemble of Deep Convolutional Neural Networks Models for Facial Beauty Prediction</title><title>Journal of advanced computational intelligence and intelligent informatics</title><description>Facial beauty prediction is an emerging topic. The pursuit of facial beauty is the nature of human beings. As the demand for aesthetic surgery has increased significantly over the past few years, an understanding beauty is becoming increasingly important in medical settings. This work proposes a new ensemble based on the pre-trained convolutional neural network (CNN) models to identify scores for facial beauty prediction. These ensembles were originally built from the following previously trained models: DenseNet-201, Inception-v3, MobileNetV2, and EfficientNetB7. According to the SCUT-FBP5500 benchmark dataset, the proposed model obtains a Pearson coefficient of 0.9469. This reveals that the suggested EN-CNNs model can be successfully applied in a variety of face-to-face applications.</description><subject>Artificial neural networks</subject><subject>Beauty</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Neural networks</subject><issn>1343-0130</issn><issn>1883-8014</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotUMtOwzAQtBBIVKU_wMkS5xR77STOsZQWkMrjQM9W4qyllDQOdgLq3-O2nGZ2d_Y1hNxyNgdWZOn9rjRN08QAxLznMXdBJlwpkSjG5WXkQoqEccGuySyEHWORQ8Ykn5DtoqOrLuC-apE6Sx8Re7p03Y9rx6FxXdnSNxz9CYZf578CfXU1toFa5-k6Lo6lByzH4UA_PNaNOXbdkCtbtgFn_zgl2_Xqc_mcbN6fXpaLTWIksCGxVWVLAJNzyRmArGqJYFJhc8g4t8bWVVrkpuYoikIhVqAAuDBgQKXxTzEld-e5vXffI4ZB79zo49FBgyq4lJkoRFTBWWW8C8Gj1b1v9qU_aM70yUF9dlAfHdQnB8Ufw3Nk6Q</recordid><startdate>20231120</startdate><enddate>20231120</enddate><creator>Boukhari, Djamel Eddine</creator><creator>Chemsa, Ali</creator><creator>Ajgou, Riadh</creator><creator>Bouzaher, Mohamed Taher</creator><general>Fuji Technology Press Co. Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-5142-7643</orcidid><orcidid>https://orcid.org/0000-0002-2170-5881</orcidid><orcidid>https://orcid.org/0000-0002-9219-1320</orcidid><orcidid>https://orcid.org/0000-0001-7209-7516</orcidid></search><sort><creationdate>20231120</creationdate><title>An Ensemble of Deep Convolutional Neural Networks Models for Facial Beauty Prediction</title><author>Boukhari, Djamel Eddine ; Chemsa, Ali ; Ajgou, Riadh ; Bouzaher, Mohamed Taher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-fbbfa22c71410224bd4e2c53f72611fcfdb597cd1e3998eeb282213c2c2851203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Beauty</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boukhari, Djamel Eddine</creatorcontrib><creatorcontrib>Chemsa, Ali</creatorcontrib><creatorcontrib>Ajgou, Riadh</creatorcontrib><creatorcontrib>Bouzaher, Mohamed Taher</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of advanced computational intelligence and intelligent informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boukhari, Djamel Eddine</au><au>Chemsa, Ali</au><au>Ajgou, Riadh</au><au>Bouzaher, Mohamed Taher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Ensemble of Deep Convolutional Neural Networks Models for Facial Beauty Prediction</atitle><jtitle>Journal of advanced computational intelligence and intelligent informatics</jtitle><date>2023-11-20</date><risdate>2023</risdate><volume>27</volume><issue>6</issue><spage>1209</spage><epage>1215</epage><pages>1209-1215</pages><issn>1343-0130</issn><eissn>1883-8014</eissn><abstract>Facial beauty prediction is an emerging topic. The pursuit of facial beauty is the nature of human beings. As the demand for aesthetic surgery has increased significantly over the past few years, an understanding beauty is becoming increasingly important in medical settings. This work proposes a new ensemble based on the pre-trained convolutional neural network (CNN) models to identify scores for facial beauty prediction. These ensembles were originally built from the following previously trained models: DenseNet-201, Inception-v3, MobileNetV2, and EfficientNetB7. According to the SCUT-FBP5500 benchmark dataset, the proposed model obtains a Pearson coefficient of 0.9469. This reveals that the suggested EN-CNNs model can be successfully applied in a variety of face-to-face applications.</abstract><cop>Tokyo</cop><pub>Fuji Technology Press Co. Ltd</pub><doi>10.20965/jaciii.2023.p1209</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5142-7643</orcidid><orcidid>https://orcid.org/0000-0002-2170-5881</orcidid><orcidid>https://orcid.org/0000-0002-9219-1320</orcidid><orcidid>https://orcid.org/0000-0001-7209-7516</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1343-0130 |
ispartof | Journal of advanced computational intelligence and intelligent informatics, 2023-11, Vol.27 (6), p.1209-1215 |
issn | 1343-0130 1883-8014 |
language | eng |
recordid | cdi_proquest_journals_2891446393 |
source | DOAJ Directory of Open Access Journals |
subjects | Artificial neural networks Beauty Datasets Deep learning Neural networks |
title | An Ensemble of Deep Convolutional Neural Networks Models for Facial Beauty Prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A54%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Ensemble%20of%20Deep%20Convolutional%20Neural%20Networks%20Models%20for%20Facial%20Beauty%20Prediction&rft.jtitle=Journal%20of%20advanced%20computational%20intelligence%20and%20intelligent%20informatics&rft.au=Boukhari,%20Djamel%20Eddine&rft.date=2023-11-20&rft.volume=27&rft.issue=6&rft.spage=1209&rft.epage=1215&rft.pages=1209-1215&rft.issn=1343-0130&rft.eissn=1883-8014&rft_id=info:doi/10.20965/jaciii.2023.p1209&rft_dat=%3Cproquest_cross%3E2891446393%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2891446393&rft_id=info:pmid/&rfr_iscdi=true |