Joint Trajectory and Scheduling Optimization for Age of Synchronization Minimization in UAV-Assisted Networks with Random Updates

Unmanned aerial vehicles (UAVs) are attractive in some Internet of Things (IoT) applications, due to their flexible deployment and extended coverage. In this paper, we consider an UAV-assisted network where the UAV flies between the resource-limited sensor nodes (SNs) and collects their status updat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2023-11, Vol.71 (11), p.1-1
Hauptverfasser: Liu, Wentao, Li, Dong, Liang, Tianhao, Zhang, Tingting, Lin, Zhi, Al-Dhahir, Naofal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 11
container_start_page 1
container_title IEEE transactions on communications
container_volume 71
creator Liu, Wentao
Li, Dong
Liang, Tianhao
Zhang, Tingting
Lin, Zhi
Al-Dhahir, Naofal
description Unmanned aerial vehicles (UAVs) are attractive in some Internet of Things (IoT) applications, due to their flexible deployment and extended coverage. In this paper, we consider an UAV-assisted network where the UAV flies between the resource-limited sensor nodes (SNs) and collects their status updates. The UAV trajectory and SN scheduling are jointly optimized to minimize the Age of Synchronization (AoS). In contrast to the conventional Age of Information (AoI), AoS takes into account both the freshness and the content of the information, which makes AoS a more suitable design criterion for information collection in an energy-constrained wireless network. Since the formulated problem is challenging to solve due to its non convexity, we reformulate the problem as a Markov decision process (MDP) and propose a deep reinforcement learning (DRL) algorithm to obtain the optimal solution with various action and state spaces. Our simulation results show the fast convergence rate of the proposed DRL algorithm and demonstrate that our proposed scheme can improve the performance of the UAV-assisted network compared to AoI-based schemes.
doi_str_mv 10.1109/TCOMM.2023.3297198
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2890992601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10188891</ieee_id><sourcerecordid>2890992601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-627f2692570dd2dae3c9eee83d915aa804cb0483f178358b5e45332d0a1c84f23</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiYj-AeOhiefFabsf7ZEQPwOSCHjdlG0XitJiW0Lw5j93EYye5jDvM-_kQeiSQIcQEDfj3nAw6FCgrMOoKIjgR6hFsownwLPiGLUABCR5UfBTdBbCAgBSYKyFvp6csRGPvVzoKjq_xdIqPKrmWq3fjZ3h4SqapfmU0TiLa-dxd6axq_Foa6u5d_Z3NTD2L2csnnRfk24IJkSt8LOOG-ffAt6YOMcvTYVb4slKyajDOTqp5XvQF4fZRpO723HvIekP7x973X5S0bSISU6LmuaCZgUoRZXUrBJaa86UIJmUHNJqCilnNSk4y_g002nGGFUgScXTmrI2ut7fXXn3sdYhlgu39rapLCkXIATNgTQpuk9V3oXgdV2uvFlKvy0JlDvV5Y_qcqe6PKhuoKs9ZJqP_gGEcy4I-wa9I3yM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890992601</pqid></control><display><type>article</type><title>Joint Trajectory and Scheduling Optimization for Age of Synchronization Minimization in UAV-Assisted Networks with Random Updates</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Wentao ; Li, Dong ; Liang, Tianhao ; Zhang, Tingting ; Lin, Zhi ; Al-Dhahir, Naofal</creator><creatorcontrib>Liu, Wentao ; Li, Dong ; Liang, Tianhao ; Zhang, Tingting ; Lin, Zhi ; Al-Dhahir, Naofal</creatorcontrib><description>Unmanned aerial vehicles (UAVs) are attractive in some Internet of Things (IoT) applications, due to their flexible deployment and extended coverage. In this paper, we consider an UAV-assisted network where the UAV flies between the resource-limited sensor nodes (SNs) and collects their status updates. The UAV trajectory and SN scheduling are jointly optimized to minimize the Age of Synchronization (AoS). In contrast to the conventional Age of Information (AoI), AoS takes into account both the freshness and the content of the information, which makes AoS a more suitable design criterion for information collection in an energy-constrained wireless network. Since the formulated problem is challenging to solve due to its non convexity, we reformulate the problem as a Markov decision process (MDP) and propose a deep reinforcement learning (DRL) algorithm to obtain the optimal solution with various action and state spaces. Our simulation results show the fast convergence rate of the proposed DRL algorithm and demonstrate that our proposed scheme can improve the performance of the UAV-assisted network compared to AoI-based schemes.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2023.3297198</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Age of Synchronization ; Algorithms ; Autonomous aerial vehicles ; Convexity ; Costs ; deep reinforcement learning ; Design criteria ; Internet of Things ; Machine learning ; Markov processes ; Optimization ; Scheduling ; Synchronism ; Synchronization ; Trajectory ; UAV trajectory design ; Unmanned aerial vehicles ; Wireless communication ; Wireless networks ; Wireless sensor networks</subject><ispartof>IEEE transactions on communications, 2023-11, Vol.71 (11), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-627f2692570dd2dae3c9eee83d915aa804cb0483f178358b5e45332d0a1c84f23</cites><orcidid>0000-0002-3694-1852 ; 0000-0003-2585-0290 ; 0000-0003-0011-7383 ; 0000-0001-9894-8382 ; 0000-0002-2325-5968 ; 0000-0003-3628-364X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10188891$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10188891$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Wentao</creatorcontrib><creatorcontrib>Li, Dong</creatorcontrib><creatorcontrib>Liang, Tianhao</creatorcontrib><creatorcontrib>Zhang, Tingting</creatorcontrib><creatorcontrib>Lin, Zhi</creatorcontrib><creatorcontrib>Al-Dhahir, Naofal</creatorcontrib><title>Joint Trajectory and Scheduling Optimization for Age of Synchronization Minimization in UAV-Assisted Networks with Random Updates</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>Unmanned aerial vehicles (UAVs) are attractive in some Internet of Things (IoT) applications, due to their flexible deployment and extended coverage. In this paper, we consider an UAV-assisted network where the UAV flies between the resource-limited sensor nodes (SNs) and collects their status updates. The UAV trajectory and SN scheduling are jointly optimized to minimize the Age of Synchronization (AoS). In contrast to the conventional Age of Information (AoI), AoS takes into account both the freshness and the content of the information, which makes AoS a more suitable design criterion for information collection in an energy-constrained wireless network. Since the formulated problem is challenging to solve due to its non convexity, we reformulate the problem as a Markov decision process (MDP) and propose a deep reinforcement learning (DRL) algorithm to obtain the optimal solution with various action and state spaces. Our simulation results show the fast convergence rate of the proposed DRL algorithm and demonstrate that our proposed scheme can improve the performance of the UAV-assisted network compared to AoI-based schemes.</description><subject>Age of Synchronization</subject><subject>Algorithms</subject><subject>Autonomous aerial vehicles</subject><subject>Convexity</subject><subject>Costs</subject><subject>deep reinforcement learning</subject><subject>Design criteria</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Markov processes</subject><subject>Optimization</subject><subject>Scheduling</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Trajectory</subject><subject>UAV trajectory design</subject><subject>Unmanned aerial vehicles</subject><subject>Wireless communication</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PAjEQhhujiYj-AeOhiefFabsf7ZEQPwOSCHjdlG0XitJiW0Lw5j93EYye5jDvM-_kQeiSQIcQEDfj3nAw6FCgrMOoKIjgR6hFsownwLPiGLUABCR5UfBTdBbCAgBSYKyFvp6csRGPvVzoKjq_xdIqPKrmWq3fjZ3h4SqapfmU0TiLa-dxd6axq_Foa6u5d_Z3NTD2L2csnnRfk24IJkSt8LOOG-ffAt6YOMcvTYVb4slKyajDOTqp5XvQF4fZRpO723HvIekP7x973X5S0bSISU6LmuaCZgUoRZXUrBJaa86UIJmUHNJqCilnNSk4y_g002nGGFUgScXTmrI2ut7fXXn3sdYhlgu39rapLCkXIATNgTQpuk9V3oXgdV2uvFlKvy0JlDvV5Y_qcqe6PKhuoKs9ZJqP_gGEcy4I-wa9I3yM</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Liu, Wentao</creator><creator>Li, Dong</creator><creator>Liang, Tianhao</creator><creator>Zhang, Tingting</creator><creator>Lin, Zhi</creator><creator>Al-Dhahir, Naofal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3694-1852</orcidid><orcidid>https://orcid.org/0000-0003-2585-0290</orcidid><orcidid>https://orcid.org/0000-0003-0011-7383</orcidid><orcidid>https://orcid.org/0000-0001-9894-8382</orcidid><orcidid>https://orcid.org/0000-0002-2325-5968</orcidid><orcidid>https://orcid.org/0000-0003-3628-364X</orcidid></search><sort><creationdate>20231101</creationdate><title>Joint Trajectory and Scheduling Optimization for Age of Synchronization Minimization in UAV-Assisted Networks with Random Updates</title><author>Liu, Wentao ; Li, Dong ; Liang, Tianhao ; Zhang, Tingting ; Lin, Zhi ; Al-Dhahir, Naofal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-627f2692570dd2dae3c9eee83d915aa804cb0483f178358b5e45332d0a1c84f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Age of Synchronization</topic><topic>Algorithms</topic><topic>Autonomous aerial vehicles</topic><topic>Convexity</topic><topic>Costs</topic><topic>deep reinforcement learning</topic><topic>Design criteria</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Markov processes</topic><topic>Optimization</topic><topic>Scheduling</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Trajectory</topic><topic>UAV trajectory design</topic><topic>Unmanned aerial vehicles</topic><topic>Wireless communication</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wentao</creatorcontrib><creatorcontrib>Li, Dong</creatorcontrib><creatorcontrib>Liang, Tianhao</creatorcontrib><creatorcontrib>Zhang, Tingting</creatorcontrib><creatorcontrib>Lin, Zhi</creatorcontrib><creatorcontrib>Al-Dhahir, Naofal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Wentao</au><au>Li, Dong</au><au>Liang, Tianhao</au><au>Zhang, Tingting</au><au>Lin, Zhi</au><au>Al-Dhahir, Naofal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Trajectory and Scheduling Optimization for Age of Synchronization Minimization in UAV-Assisted Networks with Random Updates</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>71</volume><issue>11</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>Unmanned aerial vehicles (UAVs) are attractive in some Internet of Things (IoT) applications, due to their flexible deployment and extended coverage. In this paper, we consider an UAV-assisted network where the UAV flies between the resource-limited sensor nodes (SNs) and collects their status updates. The UAV trajectory and SN scheduling are jointly optimized to minimize the Age of Synchronization (AoS). In contrast to the conventional Age of Information (AoI), AoS takes into account both the freshness and the content of the information, which makes AoS a more suitable design criterion for information collection in an energy-constrained wireless network. Since the formulated problem is challenging to solve due to its non convexity, we reformulate the problem as a Markov decision process (MDP) and propose a deep reinforcement learning (DRL) algorithm to obtain the optimal solution with various action and state spaces. Our simulation results show the fast convergence rate of the proposed DRL algorithm and demonstrate that our proposed scheme can improve the performance of the UAV-assisted network compared to AoI-based schemes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2023.3297198</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3694-1852</orcidid><orcidid>https://orcid.org/0000-0003-2585-0290</orcidid><orcidid>https://orcid.org/0000-0003-0011-7383</orcidid><orcidid>https://orcid.org/0000-0001-9894-8382</orcidid><orcidid>https://orcid.org/0000-0002-2325-5968</orcidid><orcidid>https://orcid.org/0000-0003-3628-364X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2023-11, Vol.71 (11), p.1-1
issn 0090-6778
1558-0857
language eng
recordid cdi_proquest_journals_2890992601
source IEEE Electronic Library (IEL)
subjects Age of Synchronization
Algorithms
Autonomous aerial vehicles
Convexity
Costs
deep reinforcement learning
Design criteria
Internet of Things
Machine learning
Markov processes
Optimization
Scheduling
Synchronism
Synchronization
Trajectory
UAV trajectory design
Unmanned aerial vehicles
Wireless communication
Wireless networks
Wireless sensor networks
title Joint Trajectory and Scheduling Optimization for Age of Synchronization Minimization in UAV-Assisted Networks with Random Updates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Trajectory%20and%20Scheduling%20Optimization%20for%20Age%20of%20Synchronization%20Minimization%20in%20UAV-Assisted%20Networks%20with%20Random%20Updates&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Liu,%20Wentao&rft.date=2023-11-01&rft.volume=71&rft.issue=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2023.3297198&rft_dat=%3Cproquest_RIE%3E2890992601%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890992601&rft_id=info:pmid/&rft_ieee_id=10188891&rfr_iscdi=true