Joint Trajectory and Scheduling Optimization for Age of Synchronization Minimization in UAV-Assisted Networks with Random Updates
Unmanned aerial vehicles (UAVs) are attractive in some Internet of Things (IoT) applications, due to their flexible deployment and extended coverage. In this paper, we consider an UAV-assisted network where the UAV flies between the resource-limited sensor nodes (SNs) and collects their status updat...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 2023-11, Vol.71 (11), p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 11 |
container_start_page | 1 |
container_title | IEEE transactions on communications |
container_volume | 71 |
creator | Liu, Wentao Li, Dong Liang, Tianhao Zhang, Tingting Lin, Zhi Al-Dhahir, Naofal |
description | Unmanned aerial vehicles (UAVs) are attractive in some Internet of Things (IoT) applications, due to their flexible deployment and extended coverage. In this paper, we consider an UAV-assisted network where the UAV flies between the resource-limited sensor nodes (SNs) and collects their status updates. The UAV trajectory and SN scheduling are jointly optimized to minimize the Age of Synchronization (AoS). In contrast to the conventional Age of Information (AoI), AoS takes into account both the freshness and the content of the information, which makes AoS a more suitable design criterion for information collection in an energy-constrained wireless network. Since the formulated problem is challenging to solve due to its non convexity, we reformulate the problem as a Markov decision process (MDP) and propose a deep reinforcement learning (DRL) algorithm to obtain the optimal solution with various action and state spaces. Our simulation results show the fast convergence rate of the proposed DRL algorithm and demonstrate that our proposed scheme can improve the performance of the UAV-assisted network compared to AoI-based schemes. |
doi_str_mv | 10.1109/TCOMM.2023.3297198 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2890992601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10188891</ieee_id><sourcerecordid>2890992601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-627f2692570dd2dae3c9eee83d915aa804cb0483f178358b5e45332d0a1c84f23</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiYj-AeOhiefFabsf7ZEQPwOSCHjdlG0XitJiW0Lw5j93EYye5jDvM-_kQeiSQIcQEDfj3nAw6FCgrMOoKIjgR6hFsownwLPiGLUABCR5UfBTdBbCAgBSYKyFvp6csRGPvVzoKjq_xdIqPKrmWq3fjZ3h4SqapfmU0TiLa-dxd6axq_Foa6u5d_Z3NTD2L2csnnRfk24IJkSt8LOOG-ffAt6YOMcvTYVb4slKyajDOTqp5XvQF4fZRpO723HvIekP7x973X5S0bSISU6LmuaCZgUoRZXUrBJaa86UIJmUHNJqCilnNSk4y_g002nGGFUgScXTmrI2ut7fXXn3sdYhlgu39rapLCkXIATNgTQpuk9V3oXgdV2uvFlKvy0JlDvV5Y_qcqe6PKhuoKs9ZJqP_gGEcy4I-wa9I3yM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890992601</pqid></control><display><type>article</type><title>Joint Trajectory and Scheduling Optimization for Age of Synchronization Minimization in UAV-Assisted Networks with Random Updates</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Wentao ; Li, Dong ; Liang, Tianhao ; Zhang, Tingting ; Lin, Zhi ; Al-Dhahir, Naofal</creator><creatorcontrib>Liu, Wentao ; Li, Dong ; Liang, Tianhao ; Zhang, Tingting ; Lin, Zhi ; Al-Dhahir, Naofal</creatorcontrib><description>Unmanned aerial vehicles (UAVs) are attractive in some Internet of Things (IoT) applications, due to their flexible deployment and extended coverage. In this paper, we consider an UAV-assisted network where the UAV flies between the resource-limited sensor nodes (SNs) and collects their status updates. The UAV trajectory and SN scheduling are jointly optimized to minimize the Age of Synchronization (AoS). In contrast to the conventional Age of Information (AoI), AoS takes into account both the freshness and the content of the information, which makes AoS a more suitable design criterion for information collection in an energy-constrained wireless network. Since the formulated problem is challenging to solve due to its non convexity, we reformulate the problem as a Markov decision process (MDP) and propose a deep reinforcement learning (DRL) algorithm to obtain the optimal solution with various action and state spaces. Our simulation results show the fast convergence rate of the proposed DRL algorithm and demonstrate that our proposed scheme can improve the performance of the UAV-assisted network compared to AoI-based schemes.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2023.3297198</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Age of Synchronization ; Algorithms ; Autonomous aerial vehicles ; Convexity ; Costs ; deep reinforcement learning ; Design criteria ; Internet of Things ; Machine learning ; Markov processes ; Optimization ; Scheduling ; Synchronism ; Synchronization ; Trajectory ; UAV trajectory design ; Unmanned aerial vehicles ; Wireless communication ; Wireless networks ; Wireless sensor networks</subject><ispartof>IEEE transactions on communications, 2023-11, Vol.71 (11), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-627f2692570dd2dae3c9eee83d915aa804cb0483f178358b5e45332d0a1c84f23</cites><orcidid>0000-0002-3694-1852 ; 0000-0003-2585-0290 ; 0000-0003-0011-7383 ; 0000-0001-9894-8382 ; 0000-0002-2325-5968 ; 0000-0003-3628-364X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10188891$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10188891$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Wentao</creatorcontrib><creatorcontrib>Li, Dong</creatorcontrib><creatorcontrib>Liang, Tianhao</creatorcontrib><creatorcontrib>Zhang, Tingting</creatorcontrib><creatorcontrib>Lin, Zhi</creatorcontrib><creatorcontrib>Al-Dhahir, Naofal</creatorcontrib><title>Joint Trajectory and Scheduling Optimization for Age of Synchronization Minimization in UAV-Assisted Networks with Random Updates</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>Unmanned aerial vehicles (UAVs) are attractive in some Internet of Things (IoT) applications, due to their flexible deployment and extended coverage. In this paper, we consider an UAV-assisted network where the UAV flies between the resource-limited sensor nodes (SNs) and collects their status updates. The UAV trajectory and SN scheduling are jointly optimized to minimize the Age of Synchronization (AoS). In contrast to the conventional Age of Information (AoI), AoS takes into account both the freshness and the content of the information, which makes AoS a more suitable design criterion for information collection in an energy-constrained wireless network. Since the formulated problem is challenging to solve due to its non convexity, we reformulate the problem as a Markov decision process (MDP) and propose a deep reinforcement learning (DRL) algorithm to obtain the optimal solution with various action and state spaces. Our simulation results show the fast convergence rate of the proposed DRL algorithm and demonstrate that our proposed scheme can improve the performance of the UAV-assisted network compared to AoI-based schemes.</description><subject>Age of Synchronization</subject><subject>Algorithms</subject><subject>Autonomous aerial vehicles</subject><subject>Convexity</subject><subject>Costs</subject><subject>deep reinforcement learning</subject><subject>Design criteria</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Markov processes</subject><subject>Optimization</subject><subject>Scheduling</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Trajectory</subject><subject>UAV trajectory design</subject><subject>Unmanned aerial vehicles</subject><subject>Wireless communication</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PAjEQhhujiYj-AeOhiefFabsf7ZEQPwOSCHjdlG0XitJiW0Lw5j93EYye5jDvM-_kQeiSQIcQEDfj3nAw6FCgrMOoKIjgR6hFsownwLPiGLUABCR5UfBTdBbCAgBSYKyFvp6csRGPvVzoKjq_xdIqPKrmWq3fjZ3h4SqapfmU0TiLa-dxd6axq_Foa6u5d_Z3NTD2L2csnnRfk24IJkSt8LOOG-ffAt6YOMcvTYVb4slKyajDOTqp5XvQF4fZRpO723HvIekP7x973X5S0bSISU6LmuaCZgUoRZXUrBJaa86UIJmUHNJqCilnNSk4y_g002nGGFUgScXTmrI2ut7fXXn3sdYhlgu39rapLCkXIATNgTQpuk9V3oXgdV2uvFlKvy0JlDvV5Y_qcqe6PKhuoKs9ZJqP_gGEcy4I-wa9I3yM</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Liu, Wentao</creator><creator>Li, Dong</creator><creator>Liang, Tianhao</creator><creator>Zhang, Tingting</creator><creator>Lin, Zhi</creator><creator>Al-Dhahir, Naofal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3694-1852</orcidid><orcidid>https://orcid.org/0000-0003-2585-0290</orcidid><orcidid>https://orcid.org/0000-0003-0011-7383</orcidid><orcidid>https://orcid.org/0000-0001-9894-8382</orcidid><orcidid>https://orcid.org/0000-0002-2325-5968</orcidid><orcidid>https://orcid.org/0000-0003-3628-364X</orcidid></search><sort><creationdate>20231101</creationdate><title>Joint Trajectory and Scheduling Optimization for Age of Synchronization Minimization in UAV-Assisted Networks with Random Updates</title><author>Liu, Wentao ; Li, Dong ; Liang, Tianhao ; Zhang, Tingting ; Lin, Zhi ; Al-Dhahir, Naofal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-627f2692570dd2dae3c9eee83d915aa804cb0483f178358b5e45332d0a1c84f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Age of Synchronization</topic><topic>Algorithms</topic><topic>Autonomous aerial vehicles</topic><topic>Convexity</topic><topic>Costs</topic><topic>deep reinforcement learning</topic><topic>Design criteria</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Markov processes</topic><topic>Optimization</topic><topic>Scheduling</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Trajectory</topic><topic>UAV trajectory design</topic><topic>Unmanned aerial vehicles</topic><topic>Wireless communication</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wentao</creatorcontrib><creatorcontrib>Li, Dong</creatorcontrib><creatorcontrib>Liang, Tianhao</creatorcontrib><creatorcontrib>Zhang, Tingting</creatorcontrib><creatorcontrib>Lin, Zhi</creatorcontrib><creatorcontrib>Al-Dhahir, Naofal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Wentao</au><au>Li, Dong</au><au>Liang, Tianhao</au><au>Zhang, Tingting</au><au>Lin, Zhi</au><au>Al-Dhahir, Naofal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Trajectory and Scheduling Optimization for Age of Synchronization Minimization in UAV-Assisted Networks with Random Updates</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>71</volume><issue>11</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>Unmanned aerial vehicles (UAVs) are attractive in some Internet of Things (IoT) applications, due to their flexible deployment and extended coverage. In this paper, we consider an UAV-assisted network where the UAV flies between the resource-limited sensor nodes (SNs) and collects their status updates. The UAV trajectory and SN scheduling are jointly optimized to minimize the Age of Synchronization (AoS). In contrast to the conventional Age of Information (AoI), AoS takes into account both the freshness and the content of the information, which makes AoS a more suitable design criterion for information collection in an energy-constrained wireless network. Since the formulated problem is challenging to solve due to its non convexity, we reformulate the problem as a Markov decision process (MDP) and propose a deep reinforcement learning (DRL) algorithm to obtain the optimal solution with various action and state spaces. Our simulation results show the fast convergence rate of the proposed DRL algorithm and demonstrate that our proposed scheme can improve the performance of the UAV-assisted network compared to AoI-based schemes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2023.3297198</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3694-1852</orcidid><orcidid>https://orcid.org/0000-0003-2585-0290</orcidid><orcidid>https://orcid.org/0000-0003-0011-7383</orcidid><orcidid>https://orcid.org/0000-0001-9894-8382</orcidid><orcidid>https://orcid.org/0000-0002-2325-5968</orcidid><orcidid>https://orcid.org/0000-0003-3628-364X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 2023-11, Vol.71 (11), p.1-1 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_proquest_journals_2890992601 |
source | IEEE Electronic Library (IEL) |
subjects | Age of Synchronization Algorithms Autonomous aerial vehicles Convexity Costs deep reinforcement learning Design criteria Internet of Things Machine learning Markov processes Optimization Scheduling Synchronism Synchronization Trajectory UAV trajectory design Unmanned aerial vehicles Wireless communication Wireless networks Wireless sensor networks |
title | Joint Trajectory and Scheduling Optimization for Age of Synchronization Minimization in UAV-Assisted Networks with Random Updates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Trajectory%20and%20Scheduling%20Optimization%20for%20Age%20of%20Synchronization%20Minimization%20in%20UAV-Assisted%20Networks%20with%20Random%20Updates&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Liu,%20Wentao&rft.date=2023-11-01&rft.volume=71&rft.issue=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2023.3297198&rft_dat=%3Cproquest_RIE%3E2890992601%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890992601&rft_id=info:pmid/&rft_ieee_id=10188891&rfr_iscdi=true |