Singularities of discrete improper indefinite affine spheres
In this paper we consider discrete improper affine spheres based on asymptotic nets. In this context, we distinguish the discrete edges and vertices that must be considered singular. The singular edges can be considered as discrete cuspidal edges, while some of the singular vertices can be considere...
Gespeichert in:
Veröffentlicht in: | Journal of geometry 2023-12, Vol.114 (3), Article 34 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Journal of geometry |
container_volume | 114 |
creator | de Vargas, Anderson Reis Craizer, Marcos |
description | In this paper we consider discrete improper affine spheres based on asymptotic nets. In this context, we distinguish the discrete edges and vertices that must be considered singular. The singular edges can be considered as discrete cuspidal edges, while some of the singular vertices can be considered as discrete swallowtails. The classification of singularities of discrete nets is quite a difficult task, and our results can be seen as a first step in this direction. We also prove some characterizations of ruled discrete improper affine spheres which are analogous to the smooth case. |
doi_str_mv | 10.1007/s00022-023-00698-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2890829977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2890829977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-3465d0a8d1884758f046608c668ca0c55c00386248e45cbd902109afb2cd19b63</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMoWFe_gKeC5-gkTdMJeJHFf7DgQT2HbJqsWXbbmnQP_fZGK3jzNMPwezNvHiGXDK4ZQHOTAIBzCryiAFIhnY5IwQQHiko1x6QAEA3lQuIpOUtpm_GKS1WQ29fQbQ47E8MYXCp7X7Yh2ehGV4b9EPvBxTJ0rfOhC3lmfG5cmYYPF106Jyfe7JK7-K0L8v5w_7Z8oquXx-fl3Ypa3sBIKyHrFgy2DFE0NXoQUgJaKdEasHVtsxuUXKATtV23CjgDZfya25aptawW5Gremw19Hlwa9bY_xC6f1BwVIM8_NpniM2Vjn1J0Xg8x7E2cNAP9nZKeU9I5Jf2Tkp6yqJpFKcPdxsW_1f-ovgAt_Gnx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890829977</pqid></control><display><type>article</type><title>Singularities of discrete improper indefinite affine spheres</title><source>SpringerLink Journals - AutoHoldings</source><creator>de Vargas, Anderson Reis ; Craizer, Marcos</creator><creatorcontrib>de Vargas, Anderson Reis ; Craizer, Marcos</creatorcontrib><description>In this paper we consider discrete improper affine spheres based on asymptotic nets. In this context, we distinguish the discrete edges and vertices that must be considered singular. The singular edges can be considered as discrete cuspidal edges, while some of the singular vertices can be considered as discrete swallowtails. The classification of singularities of discrete nets is quite a difficult task, and our results can be seen as a first step in this direction. We also prove some characterizations of ruled discrete improper affine spheres which are analogous to the smooth case.</description><identifier>ISSN: 0047-2468</identifier><identifier>EISSN: 1420-8997</identifier><identifier>DOI: 10.1007/s00022-023-00698-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Apexes ; Geometry ; Graph theory ; Mathematics ; Mathematics and Statistics ; Singularities</subject><ispartof>Journal of geometry, 2023-12, Vol.114 (3), Article 34</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-3465d0a8d1884758f046608c668ca0c55c00386248e45cbd902109afb2cd19b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00022-023-00698-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00022-023-00698-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>de Vargas, Anderson Reis</creatorcontrib><creatorcontrib>Craizer, Marcos</creatorcontrib><title>Singularities of discrete improper indefinite affine spheres</title><title>Journal of geometry</title><addtitle>J. Geom</addtitle><description>In this paper we consider discrete improper affine spheres based on asymptotic nets. In this context, we distinguish the discrete edges and vertices that must be considered singular. The singular edges can be considered as discrete cuspidal edges, while some of the singular vertices can be considered as discrete swallowtails. The classification of singularities of discrete nets is quite a difficult task, and our results can be seen as a first step in this direction. We also prove some characterizations of ruled discrete improper affine spheres which are analogous to the smooth case.</description><subject>Apexes</subject><subject>Geometry</subject><subject>Graph theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Singularities</subject><issn>0047-2468</issn><issn>1420-8997</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMoWFe_gKeC5-gkTdMJeJHFf7DgQT2HbJqsWXbbmnQP_fZGK3jzNMPwezNvHiGXDK4ZQHOTAIBzCryiAFIhnY5IwQQHiko1x6QAEA3lQuIpOUtpm_GKS1WQ29fQbQ47E8MYXCp7X7Yh2ehGV4b9EPvBxTJ0rfOhC3lmfG5cmYYPF106Jyfe7JK7-K0L8v5w_7Z8oquXx-fl3Ypa3sBIKyHrFgy2DFE0NXoQUgJaKdEasHVtsxuUXKATtV23CjgDZfya25aptawW5Gremw19Hlwa9bY_xC6f1BwVIM8_NpniM2Vjn1J0Xg8x7E2cNAP9nZKeU9I5Jf2Tkp6yqJpFKcPdxsW_1f-ovgAt_Gnx</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>de Vargas, Anderson Reis</creator><creator>Craizer, Marcos</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>Singularities of discrete improper indefinite affine spheres</title><author>de Vargas, Anderson Reis ; Craizer, Marcos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-3465d0a8d1884758f046608c668ca0c55c00386248e45cbd902109afb2cd19b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Apexes</topic><topic>Geometry</topic><topic>Graph theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Singularities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Vargas, Anderson Reis</creatorcontrib><creatorcontrib>Craizer, Marcos</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Vargas, Anderson Reis</au><au>Craizer, Marcos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singularities of discrete improper indefinite affine spheres</atitle><jtitle>Journal of geometry</jtitle><stitle>J. Geom</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>114</volume><issue>3</issue><artnum>34</artnum><issn>0047-2468</issn><eissn>1420-8997</eissn><abstract>In this paper we consider discrete improper affine spheres based on asymptotic nets. In this context, we distinguish the discrete edges and vertices that must be considered singular. The singular edges can be considered as discrete cuspidal edges, while some of the singular vertices can be considered as discrete swallowtails. The classification of singularities of discrete nets is quite a difficult task, and our results can be seen as a first step in this direction. We also prove some characterizations of ruled discrete improper affine spheres which are analogous to the smooth case.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00022-023-00698-y</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0047-2468 |
ispartof | Journal of geometry, 2023-12, Vol.114 (3), Article 34 |
issn | 0047-2468 1420-8997 |
language | eng |
recordid | cdi_proquest_journals_2890829977 |
source | SpringerLink Journals - AutoHoldings |
subjects | Apexes Geometry Graph theory Mathematics Mathematics and Statistics Singularities |
title | Singularities of discrete improper indefinite affine spheres |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A48%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singularities%20of%20discrete%20improper%20indefinite%20affine%20spheres&rft.jtitle=Journal%20of%20geometry&rft.au=de%20Vargas,%20Anderson%20Reis&rft.date=2023-12-01&rft.volume=114&rft.issue=3&rft.artnum=34&rft.issn=0047-2468&rft.eissn=1420-8997&rft_id=info:doi/10.1007/s00022-023-00698-y&rft_dat=%3Cproquest_cross%3E2890829977%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890829977&rft_id=info:pmid/&rfr_iscdi=true |