Singularities of discrete improper indefinite affine spheres

In this paper we consider discrete improper affine spheres based on asymptotic nets. In this context, we distinguish the discrete edges and vertices that must be considered singular. The singular edges can be considered as discrete cuspidal edges, while some of the singular vertices can be considere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geometry 2023-12, Vol.114 (3), Article 34
Hauptverfasser: de Vargas, Anderson Reis, Craizer, Marcos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Journal of geometry
container_volume 114
creator de Vargas, Anderson Reis
Craizer, Marcos
description In this paper we consider discrete improper affine spheres based on asymptotic nets. In this context, we distinguish the discrete edges and vertices that must be considered singular. The singular edges can be considered as discrete cuspidal edges, while some of the singular vertices can be considered as discrete swallowtails. The classification of singularities of discrete nets is quite a difficult task, and our results can be seen as a first step in this direction. We also prove some characterizations of ruled discrete improper affine spheres which are analogous to the smooth case.
doi_str_mv 10.1007/s00022-023-00698-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2890829977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2890829977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-3465d0a8d1884758f046608c668ca0c55c00386248e45cbd902109afb2cd19b63</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMoWFe_gKeC5-gkTdMJeJHFf7DgQT2HbJqsWXbbmnQP_fZGK3jzNMPwezNvHiGXDK4ZQHOTAIBzCryiAFIhnY5IwQQHiko1x6QAEA3lQuIpOUtpm_GKS1WQ29fQbQ47E8MYXCp7X7Yh2ehGV4b9EPvBxTJ0rfOhC3lmfG5cmYYPF106Jyfe7JK7-K0L8v5w_7Z8oquXx-fl3Ypa3sBIKyHrFgy2DFE0NXoQUgJaKdEasHVtsxuUXKATtV23CjgDZfya25aptawW5Gremw19Hlwa9bY_xC6f1BwVIM8_NpniM2Vjn1J0Xg8x7E2cNAP9nZKeU9I5Jf2Tkp6yqJpFKcPdxsW_1f-ovgAt_Gnx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890829977</pqid></control><display><type>article</type><title>Singularities of discrete improper indefinite affine spheres</title><source>SpringerLink Journals - AutoHoldings</source><creator>de Vargas, Anderson Reis ; Craizer, Marcos</creator><creatorcontrib>de Vargas, Anderson Reis ; Craizer, Marcos</creatorcontrib><description>In this paper we consider discrete improper affine spheres based on asymptotic nets. In this context, we distinguish the discrete edges and vertices that must be considered singular. The singular edges can be considered as discrete cuspidal edges, while some of the singular vertices can be considered as discrete swallowtails. The classification of singularities of discrete nets is quite a difficult task, and our results can be seen as a first step in this direction. We also prove some characterizations of ruled discrete improper affine spheres which are analogous to the smooth case.</description><identifier>ISSN: 0047-2468</identifier><identifier>EISSN: 1420-8997</identifier><identifier>DOI: 10.1007/s00022-023-00698-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Apexes ; Geometry ; Graph theory ; Mathematics ; Mathematics and Statistics ; Singularities</subject><ispartof>Journal of geometry, 2023-12, Vol.114 (3), Article 34</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-3465d0a8d1884758f046608c668ca0c55c00386248e45cbd902109afb2cd19b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00022-023-00698-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00022-023-00698-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>de Vargas, Anderson Reis</creatorcontrib><creatorcontrib>Craizer, Marcos</creatorcontrib><title>Singularities of discrete improper indefinite affine spheres</title><title>Journal of geometry</title><addtitle>J. Geom</addtitle><description>In this paper we consider discrete improper affine spheres based on asymptotic nets. In this context, we distinguish the discrete edges and vertices that must be considered singular. The singular edges can be considered as discrete cuspidal edges, while some of the singular vertices can be considered as discrete swallowtails. The classification of singularities of discrete nets is quite a difficult task, and our results can be seen as a first step in this direction. We also prove some characterizations of ruled discrete improper affine spheres which are analogous to the smooth case.</description><subject>Apexes</subject><subject>Geometry</subject><subject>Graph theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Singularities</subject><issn>0047-2468</issn><issn>1420-8997</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMoWFe_gKeC5-gkTdMJeJHFf7DgQT2HbJqsWXbbmnQP_fZGK3jzNMPwezNvHiGXDK4ZQHOTAIBzCryiAFIhnY5IwQQHiko1x6QAEA3lQuIpOUtpm_GKS1WQ29fQbQ47E8MYXCp7X7Yh2ehGV4b9EPvBxTJ0rfOhC3lmfG5cmYYPF106Jyfe7JK7-K0L8v5w_7Z8oquXx-fl3Ypa3sBIKyHrFgy2DFE0NXoQUgJaKdEasHVtsxuUXKATtV23CjgDZfya25aptawW5Gremw19Hlwa9bY_xC6f1BwVIM8_NpniM2Vjn1J0Xg8x7E2cNAP9nZKeU9I5Jf2Tkp6yqJpFKcPdxsW_1f-ovgAt_Gnx</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>de Vargas, Anderson Reis</creator><creator>Craizer, Marcos</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>Singularities of discrete improper indefinite affine spheres</title><author>de Vargas, Anderson Reis ; Craizer, Marcos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-3465d0a8d1884758f046608c668ca0c55c00386248e45cbd902109afb2cd19b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Apexes</topic><topic>Geometry</topic><topic>Graph theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Singularities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Vargas, Anderson Reis</creatorcontrib><creatorcontrib>Craizer, Marcos</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Vargas, Anderson Reis</au><au>Craizer, Marcos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singularities of discrete improper indefinite affine spheres</atitle><jtitle>Journal of geometry</jtitle><stitle>J. Geom</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>114</volume><issue>3</issue><artnum>34</artnum><issn>0047-2468</issn><eissn>1420-8997</eissn><abstract>In this paper we consider discrete improper affine spheres based on asymptotic nets. In this context, we distinguish the discrete edges and vertices that must be considered singular. The singular edges can be considered as discrete cuspidal edges, while some of the singular vertices can be considered as discrete swallowtails. The classification of singularities of discrete nets is quite a difficult task, and our results can be seen as a first step in this direction. We also prove some characterizations of ruled discrete improper affine spheres which are analogous to the smooth case.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00022-023-00698-y</doi></addata></record>
fulltext fulltext
identifier ISSN: 0047-2468
ispartof Journal of geometry, 2023-12, Vol.114 (3), Article 34
issn 0047-2468
1420-8997
language eng
recordid cdi_proquest_journals_2890829977
source SpringerLink Journals - AutoHoldings
subjects Apexes
Geometry
Graph theory
Mathematics
Mathematics and Statistics
Singularities
title Singularities of discrete improper indefinite affine spheres
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A48%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singularities%20of%20discrete%20improper%20indefinite%20affine%20spheres&rft.jtitle=Journal%20of%20geometry&rft.au=de%20Vargas,%20Anderson%20Reis&rft.date=2023-12-01&rft.volume=114&rft.issue=3&rft.artnum=34&rft.issn=0047-2468&rft.eissn=1420-8997&rft_id=info:doi/10.1007/s00022-023-00698-y&rft_dat=%3Cproquest_cross%3E2890829977%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890829977&rft_id=info:pmid/&rfr_iscdi=true