Adversarial training in logit space against tiny perturbations
Adversarial training is wildly considered as one of the most effective ways to defend against adversarial examples. However, existing adversarial training methods consume unbearable time, due to the fact that they need to generate adversarial examples in a large input space. To speed up adversarial...
Gespeichert in:
Veröffentlicht in: | Multimedia systems 2023-12, Vol.29 (6), p.3277-3290 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!