Boundary and Contact Conditions of Higher Order of Accuracy for Grid-Characteristic Schemes in Acoustic Problems
Seismic wave propagation through geological media is described by linear hyperbolic systems of equations. They correspond to acoustic, isotropic, and anisotropic linear elastic porous fluid-saturated models. They can be solved numerically by applying grid-characteristic schemes, which take into acco...
Gespeichert in:
Veröffentlicht in: | Computational mathematics and mathematical physics 2023-10, Vol.63 (10), p.1760-1772 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1772 |
---|---|
container_issue | 10 |
container_start_page | 1760 |
container_title | Computational mathematics and mathematical physics |
container_volume | 63 |
creator | Shevchenko, A. V. Golubev, V. I. |
description | Seismic wave propagation through geological media is described by linear hyperbolic systems of equations. They correspond to acoustic, isotropic, and anisotropic linear elastic porous fluid-saturated models. They can be solved numerically by applying grid-characteristic schemes, which take into account propagation of solution discontinuities along characteristics. An important property of schemes used in practice is their high order of accuracy, due to which signal wavefronts can be clearly resolved. Previously, much attention was given to this property at interior points of the computational domain. In this paper, we study the order of a scheme up to the boundary of the domain inclusive. An approach is proposed whereby arbitrary linear boundary and contact conditions can be set up to high accuracy. The presentation is given for the system of one-dimensional acoustic equations with constant coefficients. |
doi_str_mv | 10.1134/S096554252310010X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2890829102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2890829102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-51b115de060518a802baee134c7bd5014d446ce6eb5be6d574b3029b2d8a1c673</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvA82omu0l3j3XRVihUqIK3JV_bprRJTXYP_fdmreBBvMwwM887w7wI3QK5B8iLhxWpOGMFZTQHQoB8nKERMMYyzjk9R6NhnA3zS3QV4zYhvCrzETo8-t5pEY5YOI1r7zqhuiFr21nvIvYtntv1xgS8DDrFVE-V6oNQR9z6gGfB6qzeiNToTLCxswqv1MbsTcTWJdb3373X4OXO7OM1umjFLpqbnzxG789Pb_U8WyxnL_V0kakceJcxkABMG8IJg1KUhEphTPpUTaRmBApdFFwZbiSThms2KWROaCWpLgUoPsnH6O609xD8Z29i12x9H1w62dCyIiWtgNBEwYlSwccYTNscgt0nOxogzWBs88fYpKEnTUysW5vwu_l_0Rdnh3pz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890829102</pqid></control><display><type>article</type><title>Boundary and Contact Conditions of Higher Order of Accuracy for Grid-Characteristic Schemes in Acoustic Problems</title><source>SpringerLink Journals</source><creator>Shevchenko, A. V. ; Golubev, V. I.</creator><creatorcontrib>Shevchenko, A. V. ; Golubev, V. I.</creatorcontrib><description>Seismic wave propagation through geological media is described by linear hyperbolic systems of equations. They correspond to acoustic, isotropic, and anisotropic linear elastic porous fluid-saturated models. They can be solved numerically by applying grid-characteristic schemes, which take into account propagation of solution discontinuities along characteristics. An important property of schemes used in practice is their high order of accuracy, due to which signal wavefronts can be clearly resolved. Previously, much attention was given to this property at interior points of the computational domain. In this paper, we study the order of a scheme up to the boundary of the domain inclusive. An approach is proposed whereby arbitrary linear boundary and contact conditions can be set up to high accuracy. The presentation is given for the system of one-dimensional acoustic equations with constant coefficients.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S096554252310010X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Accuracy ; Acoustic propagation ; Coefficients ; Computational Mathematics and Numerical Analysis ; Elastic anisotropy ; General Numerical Methods ; Hyperbolic systems ; Mathematics ; Mathematics and Statistics ; Seismic waves ; Wave fronts ; Wave propagation</subject><ispartof>Computational mathematics and mathematical physics, 2023-10, Vol.63 (10), p.1760-1772</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2023, Vol. 63, No. 10, pp. 1760–1772. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2023, Vol. 63, No. 10, pp. 1600–1613.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-51b115de060518a802baee134c7bd5014d446ce6eb5be6d574b3029b2d8a1c673</citedby><cites>FETCH-LOGICAL-c316t-51b115de060518a802baee134c7bd5014d446ce6eb5be6d574b3029b2d8a1c673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S096554252310010X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S096554252310010X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Shevchenko, A. V.</creatorcontrib><creatorcontrib>Golubev, V. I.</creatorcontrib><title>Boundary and Contact Conditions of Higher Order of Accuracy for Grid-Characteristic Schemes in Acoustic Problems</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>Seismic wave propagation through geological media is described by linear hyperbolic systems of equations. They correspond to acoustic, isotropic, and anisotropic linear elastic porous fluid-saturated models. They can be solved numerically by applying grid-characteristic schemes, which take into account propagation of solution discontinuities along characteristics. An important property of schemes used in practice is their high order of accuracy, due to which signal wavefronts can be clearly resolved. Previously, much attention was given to this property at interior points of the computational domain. In this paper, we study the order of a scheme up to the boundary of the domain inclusive. An approach is proposed whereby arbitrary linear boundary and contact conditions can be set up to high accuracy. The presentation is given for the system of one-dimensional acoustic equations with constant coefficients.</description><subject>Accuracy</subject><subject>Acoustic propagation</subject><subject>Coefficients</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Elastic anisotropy</subject><subject>General Numerical Methods</subject><subject>Hyperbolic systems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Seismic waves</subject><subject>Wave fronts</subject><subject>Wave propagation</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvA82omu0l3j3XRVihUqIK3JV_bprRJTXYP_fdmreBBvMwwM887w7wI3QK5B8iLhxWpOGMFZTQHQoB8nKERMMYyzjk9R6NhnA3zS3QV4zYhvCrzETo8-t5pEY5YOI1r7zqhuiFr21nvIvYtntv1xgS8DDrFVE-V6oNQR9z6gGfB6qzeiNToTLCxswqv1MbsTcTWJdb3373X4OXO7OM1umjFLpqbnzxG789Pb_U8WyxnL_V0kakceJcxkABMG8IJg1KUhEphTPpUTaRmBApdFFwZbiSThms2KWROaCWpLgUoPsnH6O609xD8Z29i12x9H1w62dCyIiWtgNBEwYlSwccYTNscgt0nOxogzWBs88fYpKEnTUysW5vwu_l_0Rdnh3pz</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Shevchenko, A. V.</creator><creator>Golubev, V. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20231001</creationdate><title>Boundary and Contact Conditions of Higher Order of Accuracy for Grid-Characteristic Schemes in Acoustic Problems</title><author>Shevchenko, A. V. ; Golubev, V. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-51b115de060518a802baee134c7bd5014d446ce6eb5be6d574b3029b2d8a1c673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Acoustic propagation</topic><topic>Coefficients</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Elastic anisotropy</topic><topic>General Numerical Methods</topic><topic>Hyperbolic systems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Seismic waves</topic><topic>Wave fronts</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shevchenko, A. V.</creatorcontrib><creatorcontrib>Golubev, V. I.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shevchenko, A. V.</au><au>Golubev, V. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary and Contact Conditions of Higher Order of Accuracy for Grid-Characteristic Schemes in Acoustic Problems</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>63</volume><issue>10</issue><spage>1760</spage><epage>1772</epage><pages>1760-1772</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>Seismic wave propagation through geological media is described by linear hyperbolic systems of equations. They correspond to acoustic, isotropic, and anisotropic linear elastic porous fluid-saturated models. They can be solved numerically by applying grid-characteristic schemes, which take into account propagation of solution discontinuities along characteristics. An important property of schemes used in practice is their high order of accuracy, due to which signal wavefronts can be clearly resolved. Previously, much attention was given to this property at interior points of the computational domain. In this paper, we study the order of a scheme up to the boundary of the domain inclusive. An approach is proposed whereby arbitrary linear boundary and contact conditions can be set up to high accuracy. The presentation is given for the system of one-dimensional acoustic equations with constant coefficients.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S096554252310010X</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-5425 |
ispartof | Computational mathematics and mathematical physics, 2023-10, Vol.63 (10), p.1760-1772 |
issn | 0965-5425 1555-6662 |
language | eng |
recordid | cdi_proquest_journals_2890829102 |
source | SpringerLink Journals |
subjects | Accuracy Acoustic propagation Coefficients Computational Mathematics and Numerical Analysis Elastic anisotropy General Numerical Methods Hyperbolic systems Mathematics Mathematics and Statistics Seismic waves Wave fronts Wave propagation |
title | Boundary and Contact Conditions of Higher Order of Accuracy for Grid-Characteristic Schemes in Acoustic Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A43%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20and%20Contact%20Conditions%20of%20Higher%20Order%20of%20Accuracy%20for%20Grid-Characteristic%20Schemes%20in%20Acoustic%20Problems&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Shevchenko,%20A.%20V.&rft.date=2023-10-01&rft.volume=63&rft.issue=10&rft.spage=1760&rft.epage=1772&rft.pages=1760-1772&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S096554252310010X&rft_dat=%3Cproquest_cross%3E2890829102%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890829102&rft_id=info:pmid/&rfr_iscdi=true |