Boundary and Contact Conditions of Higher Order of Accuracy for Grid-Characteristic Schemes in Acoustic Problems

Seismic wave propagation through geological media is described by linear hyperbolic systems of equations. They correspond to acoustic, isotropic, and anisotropic linear elastic porous fluid-saturated models. They can be solved numerically by applying grid-characteristic schemes, which take into acco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics 2023-10, Vol.63 (10), p.1760-1772
Hauptverfasser: Shevchenko, A. V., Golubev, V. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1772
container_issue 10
container_start_page 1760
container_title Computational mathematics and mathematical physics
container_volume 63
creator Shevchenko, A. V.
Golubev, V. I.
description Seismic wave propagation through geological media is described by linear hyperbolic systems of equations. They correspond to acoustic, isotropic, and anisotropic linear elastic porous fluid-saturated models. They can be solved numerically by applying grid-characteristic schemes, which take into account propagation of solution discontinuities along characteristics. An important property of schemes used in practice is their high order of accuracy, due to which signal wavefronts can be clearly resolved. Previously, much attention was given to this property at interior points of the computational domain. In this paper, we study the order of a scheme up to the boundary of the domain inclusive. An approach is proposed whereby arbitrary linear boundary and contact conditions can be set up to high accuracy. The presentation is given for the system of one-dimensional acoustic equations with constant coefficients.
doi_str_mv 10.1134/S096554252310010X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2890829102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2890829102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-51b115de060518a802baee134c7bd5014d446ce6eb5be6d574b3029b2d8a1c673</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvA82omu0l3j3XRVihUqIK3JV_bprRJTXYP_fdmreBBvMwwM887w7wI3QK5B8iLhxWpOGMFZTQHQoB8nKERMMYyzjk9R6NhnA3zS3QV4zYhvCrzETo8-t5pEY5YOI1r7zqhuiFr21nvIvYtntv1xgS8DDrFVE-V6oNQR9z6gGfB6qzeiNToTLCxswqv1MbsTcTWJdb3373X4OXO7OM1umjFLpqbnzxG789Pb_U8WyxnL_V0kakceJcxkABMG8IJg1KUhEphTPpUTaRmBApdFFwZbiSThms2KWROaCWpLgUoPsnH6O609xD8Z29i12x9H1w62dCyIiWtgNBEwYlSwccYTNscgt0nOxogzWBs88fYpKEnTUysW5vwu_l_0Rdnh3pz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890829102</pqid></control><display><type>article</type><title>Boundary and Contact Conditions of Higher Order of Accuracy for Grid-Characteristic Schemes in Acoustic Problems</title><source>SpringerLink Journals</source><creator>Shevchenko, A. V. ; Golubev, V. I.</creator><creatorcontrib>Shevchenko, A. V. ; Golubev, V. I.</creatorcontrib><description>Seismic wave propagation through geological media is described by linear hyperbolic systems of equations. They correspond to acoustic, isotropic, and anisotropic linear elastic porous fluid-saturated models. They can be solved numerically by applying grid-characteristic schemes, which take into account propagation of solution discontinuities along characteristics. An important property of schemes used in practice is their high order of accuracy, due to which signal wavefronts can be clearly resolved. Previously, much attention was given to this property at interior points of the computational domain. In this paper, we study the order of a scheme up to the boundary of the domain inclusive. An approach is proposed whereby arbitrary linear boundary and contact conditions can be set up to high accuracy. The presentation is given for the system of one-dimensional acoustic equations with constant coefficients.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S096554252310010X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Accuracy ; Acoustic propagation ; Coefficients ; Computational Mathematics and Numerical Analysis ; Elastic anisotropy ; General Numerical Methods ; Hyperbolic systems ; Mathematics ; Mathematics and Statistics ; Seismic waves ; Wave fronts ; Wave propagation</subject><ispartof>Computational mathematics and mathematical physics, 2023-10, Vol.63 (10), p.1760-1772</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2023, Vol. 63, No. 10, pp. 1760–1772. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2023, Vol. 63, No. 10, pp. 1600–1613.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-51b115de060518a802baee134c7bd5014d446ce6eb5be6d574b3029b2d8a1c673</citedby><cites>FETCH-LOGICAL-c316t-51b115de060518a802baee134c7bd5014d446ce6eb5be6d574b3029b2d8a1c673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S096554252310010X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S096554252310010X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Shevchenko, A. V.</creatorcontrib><creatorcontrib>Golubev, V. I.</creatorcontrib><title>Boundary and Contact Conditions of Higher Order of Accuracy for Grid-Characteristic Schemes in Acoustic Problems</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>Seismic wave propagation through geological media is described by linear hyperbolic systems of equations. They correspond to acoustic, isotropic, and anisotropic linear elastic porous fluid-saturated models. They can be solved numerically by applying grid-characteristic schemes, which take into account propagation of solution discontinuities along characteristics. An important property of schemes used in practice is their high order of accuracy, due to which signal wavefronts can be clearly resolved. Previously, much attention was given to this property at interior points of the computational domain. In this paper, we study the order of a scheme up to the boundary of the domain inclusive. An approach is proposed whereby arbitrary linear boundary and contact conditions can be set up to high accuracy. The presentation is given for the system of one-dimensional acoustic equations with constant coefficients.</description><subject>Accuracy</subject><subject>Acoustic propagation</subject><subject>Coefficients</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Elastic anisotropy</subject><subject>General Numerical Methods</subject><subject>Hyperbolic systems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Seismic waves</subject><subject>Wave fronts</subject><subject>Wave propagation</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvA82omu0l3j3XRVihUqIK3JV_bprRJTXYP_fdmreBBvMwwM887w7wI3QK5B8iLhxWpOGMFZTQHQoB8nKERMMYyzjk9R6NhnA3zS3QV4zYhvCrzETo8-t5pEY5YOI1r7zqhuiFr21nvIvYtntv1xgS8DDrFVE-V6oNQR9z6gGfB6qzeiNToTLCxswqv1MbsTcTWJdb3373X4OXO7OM1umjFLpqbnzxG789Pb_U8WyxnL_V0kakceJcxkABMG8IJg1KUhEphTPpUTaRmBApdFFwZbiSThms2KWROaCWpLgUoPsnH6O609xD8Z29i12x9H1w62dCyIiWtgNBEwYlSwccYTNscgt0nOxogzWBs88fYpKEnTUysW5vwu_l_0Rdnh3pz</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Shevchenko, A. V.</creator><creator>Golubev, V. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20231001</creationdate><title>Boundary and Contact Conditions of Higher Order of Accuracy for Grid-Characteristic Schemes in Acoustic Problems</title><author>Shevchenko, A. V. ; Golubev, V. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-51b115de060518a802baee134c7bd5014d446ce6eb5be6d574b3029b2d8a1c673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Acoustic propagation</topic><topic>Coefficients</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Elastic anisotropy</topic><topic>General Numerical Methods</topic><topic>Hyperbolic systems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Seismic waves</topic><topic>Wave fronts</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shevchenko, A. V.</creatorcontrib><creatorcontrib>Golubev, V. I.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shevchenko, A. V.</au><au>Golubev, V. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary and Contact Conditions of Higher Order of Accuracy for Grid-Characteristic Schemes in Acoustic Problems</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>63</volume><issue>10</issue><spage>1760</spage><epage>1772</epage><pages>1760-1772</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>Seismic wave propagation through geological media is described by linear hyperbolic systems of equations. They correspond to acoustic, isotropic, and anisotropic linear elastic porous fluid-saturated models. They can be solved numerically by applying grid-characteristic schemes, which take into account propagation of solution discontinuities along characteristics. An important property of schemes used in practice is their high order of accuracy, due to which signal wavefronts can be clearly resolved. Previously, much attention was given to this property at interior points of the computational domain. In this paper, we study the order of a scheme up to the boundary of the domain inclusive. An approach is proposed whereby arbitrary linear boundary and contact conditions can be set up to high accuracy. The presentation is given for the system of one-dimensional acoustic equations with constant coefficients.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S096554252310010X</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0965-5425
ispartof Computational mathematics and mathematical physics, 2023-10, Vol.63 (10), p.1760-1772
issn 0965-5425
1555-6662
language eng
recordid cdi_proquest_journals_2890829102
source SpringerLink Journals
subjects Accuracy
Acoustic propagation
Coefficients
Computational Mathematics and Numerical Analysis
Elastic anisotropy
General Numerical Methods
Hyperbolic systems
Mathematics
Mathematics and Statistics
Seismic waves
Wave fronts
Wave propagation
title Boundary and Contact Conditions of Higher Order of Accuracy for Grid-Characteristic Schemes in Acoustic Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A43%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20and%20Contact%20Conditions%20of%20Higher%20Order%20of%20Accuracy%20for%20Grid-Characteristic%20Schemes%20in%20Acoustic%20Problems&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Shevchenko,%20A.%20V.&rft.date=2023-10-01&rft.volume=63&rft.issue=10&rft.spage=1760&rft.epage=1772&rft.pages=1760-1772&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S096554252310010X&rft_dat=%3Cproquest_cross%3E2890829102%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890829102&rft_id=info:pmid/&rfr_iscdi=true