The role of dark pattern stimuli and personality in online impulse shopping: an application of S-O-R theory

Online impulse shopping is a growing industry. This paper uses the Stimulus‐Organism‐Response framework to model online impulse purchase behavior using a novel combination of stimuli and organism characteristics. The stimuli: social proof, limited‐quantity scarcity, and high‐demand, are three common...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of consumer behaviour 2023-11, Vol.22 (6), p.1311-1329
1. Verfasser: Abbott, Rebecca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1329
container_issue 6
container_start_page 1311
container_title Journal of consumer behaviour
container_volume 22
creator Abbott, Rebecca
description Online impulse shopping is a growing industry. This paper uses the Stimulus‐Organism‐Response framework to model online impulse purchase behavior using a novel combination of stimuli and organism characteristics. The stimuli: social proof, limited‐quantity scarcity, and high‐demand, are three commonly used website features known as dark patterns. The organism characteristic personality is measured by the big 5 personality traits and persona generated through latent profile analysis. Using the machine learning algorithm XGBoost, impulse purchasing response was predicted separately for each dark pattern stimuli. Results show personality characteristics are important features when predicting consumer impulse purchasing in response to dark pattern messages. Moreover, the personality traits (and personas) most predictive of impulse shopping behavior varied by type of dark pattern. Findings suggest personality influences susceptibility to different dark patterns, indicating a need for tailored interventions to mitigate individual consumer vulnerabilities to impulse shopping.
doi_str_mv 10.1002/cb.2208
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2890647669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2890647669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-6ecc3967aeb50d8e101c9310ec097bbc06d56968b4c75a953f47c38b8aba56c13</originalsourceid><addsrcrecordid>eNpF0E1LAzEQBuAgCtYq_oWAB09b87H5OkrRKha81HNIslmbuk3WZPfQf-_WCp5mmHkYhheAW4wWGCHy4OyCECTPwAzXQlVYUnn-25MKSSwuwVUpuwlixcgMvG22HubUeZha2Jj8BXszDD5HWIawH7sATWxg73NJ0XRhOMAQYYpdiB6GfT92xcOyTX0f4uc1uGjNNLj5q3Pw8fy0Wb5U6_fV6_JxXTmK0VBx7xxVXBhvGWqkxwg7NW28Q0pY6xBvGFdc2toJZhSjbS0clVYaaxh3mM7B3elun9P36Mugd2nM03tFE6kQrwXnalL3J-VyKiX7Vvc57E0-aIz0MSntrD4mNUl4kt6lGMq_k4KTGnOm6A9NQGVc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890647669</pqid></control><display><type>article</type><title>The role of dark pattern stimuli and personality in online impulse shopping: an application of S-O-R theory</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Abbott, Rebecca</creator><creatorcontrib>Abbott, Rebecca</creatorcontrib><description>Online impulse shopping is a growing industry. This paper uses the Stimulus‐Organism‐Response framework to model online impulse purchase behavior using a novel combination of stimuli and organism characteristics. The stimuli: social proof, limited‐quantity scarcity, and high‐demand, are three commonly used website features known as dark patterns. The organism characteristic personality is measured by the big 5 personality traits and persona generated through latent profile analysis. Using the machine learning algorithm XGBoost, impulse purchasing response was predicted separately for each dark pattern stimuli. Results show personality characteristics are important features when predicting consumer impulse purchasing in response to dark pattern messages. Moreover, the personality traits (and personas) most predictive of impulse shopping behavior varied by type of dark pattern. Findings suggest personality influences susceptibility to different dark patterns, indicating a need for tailored interventions to mitigate individual consumer vulnerabilities to impulse shopping.</description><identifier>ISSN: 1472-0817</identifier><identifier>EISSN: 1479-1838</identifier><identifier>DOI: 10.1002/cb.2208</identifier><language>eng</language><publisher>London: Wiley Subscription Services, Inc</publisher><subject>Electronic commerce ; Impulse buying ; Machine learning ; Personality tests ; Personality traits ; Scarcity ; Shopping ; Stimulus ; Susceptibility</subject><ispartof>Journal of consumer behaviour, 2023-11, Vol.22 (6), p.1311-1329</ispartof><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-6ecc3967aeb50d8e101c9310ec097bbc06d56968b4c75a953f47c38b8aba56c13</citedby><cites>FETCH-LOGICAL-c310t-6ecc3967aeb50d8e101c9310ec097bbc06d56968b4c75a953f47c38b8aba56c13</cites><orcidid>0000-0002-9128-0874</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Abbott, Rebecca</creatorcontrib><title>The role of dark pattern stimuli and personality in online impulse shopping: an application of S-O-R theory</title><title>Journal of consumer behaviour</title><description>Online impulse shopping is a growing industry. This paper uses the Stimulus‐Organism‐Response framework to model online impulse purchase behavior using a novel combination of stimuli and organism characteristics. The stimuli: social proof, limited‐quantity scarcity, and high‐demand, are three commonly used website features known as dark patterns. The organism characteristic personality is measured by the big 5 personality traits and persona generated through latent profile analysis. Using the machine learning algorithm XGBoost, impulse purchasing response was predicted separately for each dark pattern stimuli. Results show personality characteristics are important features when predicting consumer impulse purchasing in response to dark pattern messages. Moreover, the personality traits (and personas) most predictive of impulse shopping behavior varied by type of dark pattern. Findings suggest personality influences susceptibility to different dark patterns, indicating a need for tailored interventions to mitigate individual consumer vulnerabilities to impulse shopping.</description><subject>Electronic commerce</subject><subject>Impulse buying</subject><subject>Machine learning</subject><subject>Personality tests</subject><subject>Personality traits</subject><subject>Scarcity</subject><subject>Shopping</subject><subject>Stimulus</subject><subject>Susceptibility</subject><issn>1472-0817</issn><issn>1479-1838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpF0E1LAzEQBuAgCtYq_oWAB09b87H5OkrRKha81HNIslmbuk3WZPfQf-_WCp5mmHkYhheAW4wWGCHy4OyCECTPwAzXQlVYUnn-25MKSSwuwVUpuwlixcgMvG22HubUeZha2Jj8BXszDD5HWIawH7sATWxg73NJ0XRhOMAQYYpdiB6GfT92xcOyTX0f4uc1uGjNNLj5q3Pw8fy0Wb5U6_fV6_JxXTmK0VBx7xxVXBhvGWqkxwg7NW28Q0pY6xBvGFdc2toJZhSjbS0clVYaaxh3mM7B3elun9P36Mugd2nM03tFE6kQrwXnalL3J-VyKiX7Vvc57E0-aIz0MSntrD4mNUl4kt6lGMq_k4KTGnOm6A9NQGVc</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Abbott, Rebecca</creator><general>Wiley Subscription Services, Inc</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0002-9128-0874</orcidid></search><sort><creationdate>20231101</creationdate><title>The role of dark pattern stimuli and personality in online impulse shopping</title><author>Abbott, Rebecca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-6ecc3967aeb50d8e101c9310ec097bbc06d56968b4c75a953f47c38b8aba56c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Electronic commerce</topic><topic>Impulse buying</topic><topic>Machine learning</topic><topic>Personality tests</topic><topic>Personality traits</topic><topic>Scarcity</topic><topic>Shopping</topic><topic>Stimulus</topic><topic>Susceptibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbott, Rebecca</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of consumer behaviour</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbott, Rebecca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of dark pattern stimuli and personality in online impulse shopping: an application of S-O-R theory</atitle><jtitle>Journal of consumer behaviour</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>22</volume><issue>6</issue><spage>1311</spage><epage>1329</epage><pages>1311-1329</pages><issn>1472-0817</issn><eissn>1479-1838</eissn><abstract>Online impulse shopping is a growing industry. This paper uses the Stimulus‐Organism‐Response framework to model online impulse purchase behavior using a novel combination of stimuli and organism characteristics. The stimuli: social proof, limited‐quantity scarcity, and high‐demand, are three commonly used website features known as dark patterns. The organism characteristic personality is measured by the big 5 personality traits and persona generated through latent profile analysis. Using the machine learning algorithm XGBoost, impulse purchasing response was predicted separately for each dark pattern stimuli. Results show personality characteristics are important features when predicting consumer impulse purchasing in response to dark pattern messages. Moreover, the personality traits (and personas) most predictive of impulse shopping behavior varied by type of dark pattern. Findings suggest personality influences susceptibility to different dark patterns, indicating a need for tailored interventions to mitigate individual consumer vulnerabilities to impulse shopping.</abstract><cop>London</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cb.2208</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-9128-0874</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1472-0817
ispartof Journal of consumer behaviour, 2023-11, Vol.22 (6), p.1311-1329
issn 1472-0817
1479-1838
language eng
recordid cdi_proquest_journals_2890647669
source Wiley Online Library Journals Frontfile Complete; Business Source Complete
subjects Electronic commerce
Impulse buying
Machine learning
Personality tests
Personality traits
Scarcity
Shopping
Stimulus
Susceptibility
title The role of dark pattern stimuli and personality in online impulse shopping: an application of S-O-R theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T19%3A34%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20dark%20pattern%20stimuli%20and%20personality%20in%20online%20impulse%20shopping:%20an%20application%20of%20S-O-R%20theory&rft.jtitle=Journal%20of%20consumer%20behaviour&rft.au=Abbott,%20Rebecca&rft.date=2023-11-01&rft.volume=22&rft.issue=6&rft.spage=1311&rft.epage=1329&rft.pages=1311-1329&rft.issn=1472-0817&rft.eissn=1479-1838&rft_id=info:doi/10.1002/cb.2208&rft_dat=%3Cproquest_cross%3E2890647669%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890647669&rft_id=info:pmid/&rfr_iscdi=true