The role of dark pattern stimuli and personality in online impulse shopping: an application of S-O-R theory
Online impulse shopping is a growing industry. This paper uses the Stimulus‐Organism‐Response framework to model online impulse purchase behavior using a novel combination of stimuli and organism characteristics. The stimuli: social proof, limited‐quantity scarcity, and high‐demand, are three common...
Gespeichert in:
Veröffentlicht in: | Journal of consumer behaviour 2023-11, Vol.22 (6), p.1311-1329 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1329 |
---|---|
container_issue | 6 |
container_start_page | 1311 |
container_title | Journal of consumer behaviour |
container_volume | 22 |
creator | Abbott, Rebecca |
description | Online impulse shopping is a growing industry. This paper uses the Stimulus‐Organism‐Response framework to model online impulse purchase behavior using a novel combination of stimuli and organism characteristics. The stimuli: social proof, limited‐quantity scarcity, and high‐demand, are three commonly used website features known as dark patterns. The organism characteristic personality is measured by the big 5 personality traits and persona generated through latent profile analysis. Using the machine learning algorithm XGBoost, impulse purchasing response was predicted separately for each dark pattern stimuli. Results show personality characteristics are important features when predicting consumer impulse purchasing in response to dark pattern messages. Moreover, the personality traits (and personas) most predictive of impulse shopping behavior varied by type of dark pattern. Findings suggest personality influences susceptibility to different dark patterns, indicating a need for tailored interventions to mitigate individual consumer vulnerabilities to impulse shopping. |
doi_str_mv | 10.1002/cb.2208 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2890647669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2890647669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-6ecc3967aeb50d8e101c9310ec097bbc06d56968b4c75a953f47c38b8aba56c13</originalsourceid><addsrcrecordid>eNpF0E1LAzEQBuAgCtYq_oWAB09b87H5OkrRKha81HNIslmbuk3WZPfQf-_WCp5mmHkYhheAW4wWGCHy4OyCECTPwAzXQlVYUnn-25MKSSwuwVUpuwlixcgMvG22HubUeZha2Jj8BXszDD5HWIawH7sATWxg73NJ0XRhOMAQYYpdiB6GfT92xcOyTX0f4uc1uGjNNLj5q3Pw8fy0Wb5U6_fV6_JxXTmK0VBx7xxVXBhvGWqkxwg7NW28Q0pY6xBvGFdc2toJZhSjbS0clVYaaxh3mM7B3elun9P36Mugd2nM03tFE6kQrwXnalL3J-VyKiX7Vvc57E0-aIz0MSntrD4mNUl4kt6lGMq_k4KTGnOm6A9NQGVc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890647669</pqid></control><display><type>article</type><title>The role of dark pattern stimuli and personality in online impulse shopping: an application of S-O-R theory</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Abbott, Rebecca</creator><creatorcontrib>Abbott, Rebecca</creatorcontrib><description>Online impulse shopping is a growing industry. This paper uses the Stimulus‐Organism‐Response framework to model online impulse purchase behavior using a novel combination of stimuli and organism characteristics. The stimuli: social proof, limited‐quantity scarcity, and high‐demand, are three commonly used website features known as dark patterns. The organism characteristic personality is measured by the big 5 personality traits and persona generated through latent profile analysis. Using the machine learning algorithm XGBoost, impulse purchasing response was predicted separately for each dark pattern stimuli. Results show personality characteristics are important features when predicting consumer impulse purchasing in response to dark pattern messages. Moreover, the personality traits (and personas) most predictive of impulse shopping behavior varied by type of dark pattern. Findings suggest personality influences susceptibility to different dark patterns, indicating a need for tailored interventions to mitigate individual consumer vulnerabilities to impulse shopping.</description><identifier>ISSN: 1472-0817</identifier><identifier>EISSN: 1479-1838</identifier><identifier>DOI: 10.1002/cb.2208</identifier><language>eng</language><publisher>London: Wiley Subscription Services, Inc</publisher><subject>Electronic commerce ; Impulse buying ; Machine learning ; Personality tests ; Personality traits ; Scarcity ; Shopping ; Stimulus ; Susceptibility</subject><ispartof>Journal of consumer behaviour, 2023-11, Vol.22 (6), p.1311-1329</ispartof><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-6ecc3967aeb50d8e101c9310ec097bbc06d56968b4c75a953f47c38b8aba56c13</citedby><cites>FETCH-LOGICAL-c310t-6ecc3967aeb50d8e101c9310ec097bbc06d56968b4c75a953f47c38b8aba56c13</cites><orcidid>0000-0002-9128-0874</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Abbott, Rebecca</creatorcontrib><title>The role of dark pattern stimuli and personality in online impulse shopping: an application of S-O-R theory</title><title>Journal of consumer behaviour</title><description>Online impulse shopping is a growing industry. This paper uses the Stimulus‐Organism‐Response framework to model online impulse purchase behavior using a novel combination of stimuli and organism characteristics. The stimuli: social proof, limited‐quantity scarcity, and high‐demand, are three commonly used website features known as dark patterns. The organism characteristic personality is measured by the big 5 personality traits and persona generated through latent profile analysis. Using the machine learning algorithm XGBoost, impulse purchasing response was predicted separately for each dark pattern stimuli. Results show personality characteristics are important features when predicting consumer impulse purchasing in response to dark pattern messages. Moreover, the personality traits (and personas) most predictive of impulse shopping behavior varied by type of dark pattern. Findings suggest personality influences susceptibility to different dark patterns, indicating a need for tailored interventions to mitigate individual consumer vulnerabilities to impulse shopping.</description><subject>Electronic commerce</subject><subject>Impulse buying</subject><subject>Machine learning</subject><subject>Personality tests</subject><subject>Personality traits</subject><subject>Scarcity</subject><subject>Shopping</subject><subject>Stimulus</subject><subject>Susceptibility</subject><issn>1472-0817</issn><issn>1479-1838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpF0E1LAzEQBuAgCtYq_oWAB09b87H5OkrRKha81HNIslmbuk3WZPfQf-_WCp5mmHkYhheAW4wWGCHy4OyCECTPwAzXQlVYUnn-25MKSSwuwVUpuwlixcgMvG22HubUeZha2Jj8BXszDD5HWIawH7sATWxg73NJ0XRhOMAQYYpdiB6GfT92xcOyTX0f4uc1uGjNNLj5q3Pw8fy0Wb5U6_fV6_JxXTmK0VBx7xxVXBhvGWqkxwg7NW28Q0pY6xBvGFdc2toJZhSjbS0clVYaaxh3mM7B3elun9P36Mugd2nM03tFE6kQrwXnalL3J-VyKiX7Vvc57E0-aIz0MSntrD4mNUl4kt6lGMq_k4KTGnOm6A9NQGVc</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Abbott, Rebecca</creator><general>Wiley Subscription Services, Inc</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0002-9128-0874</orcidid></search><sort><creationdate>20231101</creationdate><title>The role of dark pattern stimuli and personality in online impulse shopping</title><author>Abbott, Rebecca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-6ecc3967aeb50d8e101c9310ec097bbc06d56968b4c75a953f47c38b8aba56c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Electronic commerce</topic><topic>Impulse buying</topic><topic>Machine learning</topic><topic>Personality tests</topic><topic>Personality traits</topic><topic>Scarcity</topic><topic>Shopping</topic><topic>Stimulus</topic><topic>Susceptibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbott, Rebecca</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of consumer behaviour</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbott, Rebecca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of dark pattern stimuli and personality in online impulse shopping: an application of S-O-R theory</atitle><jtitle>Journal of consumer behaviour</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>22</volume><issue>6</issue><spage>1311</spage><epage>1329</epage><pages>1311-1329</pages><issn>1472-0817</issn><eissn>1479-1838</eissn><abstract>Online impulse shopping is a growing industry. This paper uses the Stimulus‐Organism‐Response framework to model online impulse purchase behavior using a novel combination of stimuli and organism characteristics. The stimuli: social proof, limited‐quantity scarcity, and high‐demand, are three commonly used website features known as dark patterns. The organism characteristic personality is measured by the big 5 personality traits and persona generated through latent profile analysis. Using the machine learning algorithm XGBoost, impulse purchasing response was predicted separately for each dark pattern stimuli. Results show personality characteristics are important features when predicting consumer impulse purchasing in response to dark pattern messages. Moreover, the personality traits (and personas) most predictive of impulse shopping behavior varied by type of dark pattern. Findings suggest personality influences susceptibility to different dark patterns, indicating a need for tailored interventions to mitigate individual consumer vulnerabilities to impulse shopping.</abstract><cop>London</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cb.2208</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-9128-0874</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1472-0817 |
ispartof | Journal of consumer behaviour, 2023-11, Vol.22 (6), p.1311-1329 |
issn | 1472-0817 1479-1838 |
language | eng |
recordid | cdi_proquest_journals_2890647669 |
source | Wiley Online Library Journals Frontfile Complete; Business Source Complete |
subjects | Electronic commerce Impulse buying Machine learning Personality tests Personality traits Scarcity Shopping Stimulus Susceptibility |
title | The role of dark pattern stimuli and personality in online impulse shopping: an application of S-O-R theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T19%3A34%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20dark%20pattern%20stimuli%20and%20personality%20in%20online%20impulse%20shopping:%20an%20application%20of%20S-O-R%20theory&rft.jtitle=Journal%20of%20consumer%20behaviour&rft.au=Abbott,%20Rebecca&rft.date=2023-11-01&rft.volume=22&rft.issue=6&rft.spage=1311&rft.epage=1329&rft.pages=1311-1329&rft.issn=1472-0817&rft.eissn=1479-1838&rft_id=info:doi/10.1002/cb.2208&rft_dat=%3Cproquest_cross%3E2890647669%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890647669&rft_id=info:pmid/&rfr_iscdi=true |