Set-valued backward stochastic differential equations
In this paper, we establish an analytic framework for studying set-valued backward stochastic differential equations (set-valued BSDE), motivated largely by the current studies of dynamic set-valued risk measures for multi-asset or network-based financial models. Our framework will make use of the n...
Gespeichert in:
Veröffentlicht in: | The Annals of applied probability 2023-10, Vol.33 (5), p.3418 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 3418 |
container_title | The Annals of applied probability |
container_volume | 33 |
creator | Ararat, Çağın Ma, Jin Wu, Wenqian |
description | In this paper, we establish an analytic framework for studying set-valued backward stochastic differential equations (set-valued BSDE), motivated largely by the current studies of dynamic set-valued risk measures for multi-asset or network-based financial models. Our framework will make use of the notion of the Hukuhara difference between sets, in order to compensate the lack of "inverse" operation of the traditional Minkowski addition, whence the vector space structure in set-valued analysis. While proving the well-posedness of a class of set-valued BSDEs, we shall also address some fundamental issues regarding generalized Aumann–Itô integrals, especially when it is connected to the martingale representation theorem. In particular, we propose some necessary extensions of the integral that can be used to represent set-valued martingales with nonsingleton initial values. This extension turns out to be essential for the study of set-valued BSDEs. |
doi_str_mv | 10.1214/22-AAP1896 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2890435328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2890435328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-dcdf817ebfeca317854ad026ef2d1bc4fcef4d79d41671cbf1674aed2476c0083</originalsourceid><addsrcrecordid>eNotkEFLwzAYhoMoWKcXf0HBmxDNl6RNeixDpzBQUM8hTb5g52y3JFX8925sp-fy8L7wEHIN7A44yHvOadu-gm7qE1JwqDXVSqhTUgCrGK2glufkIqUVY6yRjSpI9YaZ_tj1hL7srPv6tdGXKY_u06bcu9L3IWDEIfd2XeJ2srkfh3RJzoJdJ7w6ckY-Hh_e5090-bJ4nrdL6njVZOqdDxoUdgGdFaB0Ja1nvMbAPXROBodBetV4CbUC14UdpEXPpaodY1rMyM1hdxPH7YQpm9U4xWF3abhumBSV4Hvr9mC5OKYUMZhN7L9t_DPAzD6L4dwcs4h_sAVVKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890435328</pqid></control><display><type>article</type><title>Set-valued backward stochastic differential equations</title><source>Project Euclid Complete</source><creator>Ararat, Çağın ; Ma, Jin ; Wu, Wenqian</creator><creatorcontrib>Ararat, Çağın ; Ma, Jin ; Wu, Wenqian</creatorcontrib><description>In this paper, we establish an analytic framework for studying set-valued backward stochastic differential equations (set-valued BSDE), motivated largely by the current studies of dynamic set-valued risk measures for multi-asset or network-based financial models. Our framework will make use of the notion of the Hukuhara difference between sets, in order to compensate the lack of "inverse" operation of the traditional Minkowski addition, whence the vector space structure in set-valued analysis. While proving the well-posedness of a class of set-valued BSDEs, we shall also address some fundamental issues regarding generalized Aumann–Itô integrals, especially when it is connected to the martingale representation theorem. In particular, we propose some necessary extensions of the integral that can be used to represent set-valued martingales with nonsingleton initial values. This extension turns out to be essential for the study of set-valued BSDEs.</description><identifier>ISSN: 1050-5164</identifier><identifier>EISSN: 2168-8737</identifier><identifier>DOI: 10.1214/22-AAP1896</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Differential equations ; Martingales ; Risk assessment ; Stochastic models ; Theorems ; Vector spaces</subject><ispartof>The Annals of applied probability, 2023-10, Vol.33 (5), p.3418</ispartof><rights>Copyright Institute of Mathematical Statistics Oct 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-dcdf817ebfeca317854ad026ef2d1bc4fcef4d79d41671cbf1674aed2476c0083</citedby><cites>FETCH-LOGICAL-c259t-dcdf817ebfeca317854ad026ef2d1bc4fcef4d79d41671cbf1674aed2476c0083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ararat, Çağın</creatorcontrib><creatorcontrib>Ma, Jin</creatorcontrib><creatorcontrib>Wu, Wenqian</creatorcontrib><title>Set-valued backward stochastic differential equations</title><title>The Annals of applied probability</title><description>In this paper, we establish an analytic framework for studying set-valued backward stochastic differential equations (set-valued BSDE), motivated largely by the current studies of dynamic set-valued risk measures for multi-asset or network-based financial models. Our framework will make use of the notion of the Hukuhara difference between sets, in order to compensate the lack of "inverse" operation of the traditional Minkowski addition, whence the vector space structure in set-valued analysis. While proving the well-posedness of a class of set-valued BSDEs, we shall also address some fundamental issues regarding generalized Aumann–Itô integrals, especially when it is connected to the martingale representation theorem. In particular, we propose some necessary extensions of the integral that can be used to represent set-valued martingales with nonsingleton initial values. This extension turns out to be essential for the study of set-valued BSDEs.</description><subject>Differential equations</subject><subject>Martingales</subject><subject>Risk assessment</subject><subject>Stochastic models</subject><subject>Theorems</subject><subject>Vector spaces</subject><issn>1050-5164</issn><issn>2168-8737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkEFLwzAYhoMoWKcXf0HBmxDNl6RNeixDpzBQUM8hTb5g52y3JFX8925sp-fy8L7wEHIN7A44yHvOadu-gm7qE1JwqDXVSqhTUgCrGK2glufkIqUVY6yRjSpI9YaZ_tj1hL7srPv6tdGXKY_u06bcu9L3IWDEIfd2XeJ2srkfh3RJzoJdJ7w6ckY-Hh_e5090-bJ4nrdL6njVZOqdDxoUdgGdFaB0Ja1nvMbAPXROBodBetV4CbUC14UdpEXPpaodY1rMyM1hdxPH7YQpm9U4xWF3abhumBSV4Hvr9mC5OKYUMZhN7L9t_DPAzD6L4dwcs4h_sAVVKA</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Ararat, Çağın</creator><creator>Ma, Jin</creator><creator>Wu, Wenqian</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20231001</creationdate><title>Set-valued backward stochastic differential equations</title><author>Ararat, Çağın ; Ma, Jin ; Wu, Wenqian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-dcdf817ebfeca317854ad026ef2d1bc4fcef4d79d41671cbf1674aed2476c0083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Differential equations</topic><topic>Martingales</topic><topic>Risk assessment</topic><topic>Stochastic models</topic><topic>Theorems</topic><topic>Vector spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ararat, Çağın</creatorcontrib><creatorcontrib>Ma, Jin</creatorcontrib><creatorcontrib>Wu, Wenqian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ararat, Çağın</au><au>Ma, Jin</au><au>Wu, Wenqian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Set-valued backward stochastic differential equations</atitle><jtitle>The Annals of applied probability</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>33</volume><issue>5</issue><spage>3418</spage><pages>3418-</pages><issn>1050-5164</issn><eissn>2168-8737</eissn><abstract>In this paper, we establish an analytic framework for studying set-valued backward stochastic differential equations (set-valued BSDE), motivated largely by the current studies of dynamic set-valued risk measures for multi-asset or network-based financial models. Our framework will make use of the notion of the Hukuhara difference between sets, in order to compensate the lack of "inverse" operation of the traditional Minkowski addition, whence the vector space structure in set-valued analysis. While proving the well-posedness of a class of set-valued BSDEs, we shall also address some fundamental issues regarding generalized Aumann–Itô integrals, especially when it is connected to the martingale representation theorem. In particular, we propose some necessary extensions of the integral that can be used to represent set-valued martingales with nonsingleton initial values. This extension turns out to be essential for the study of set-valued BSDEs.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/22-AAP1896</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-5164 |
ispartof | The Annals of applied probability, 2023-10, Vol.33 (5), p.3418 |
issn | 1050-5164 2168-8737 |
language | eng |
recordid | cdi_proquest_journals_2890435328 |
source | Project Euclid Complete |
subjects | Differential equations Martingales Risk assessment Stochastic models Theorems Vector spaces |
title | Set-valued backward stochastic differential equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A25%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Set-valued%20backward%20stochastic%20differential%20equations&rft.jtitle=The%20Annals%20of%20applied%20probability&rft.au=Ararat,%20%C3%87a%C4%9F%C4%B1n&rft.date=2023-10-01&rft.volume=33&rft.issue=5&rft.spage=3418&rft.pages=3418-&rft.issn=1050-5164&rft.eissn=2168-8737&rft_id=info:doi/10.1214/22-AAP1896&rft_dat=%3Cproquest_cross%3E2890435328%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890435328&rft_id=info:pmid/&rfr_iscdi=true |