Set-valued backward stochastic differential equations

In this paper, we establish an analytic framework for studying set-valued backward stochastic differential equations (set-valued BSDE), motivated largely by the current studies of dynamic set-valued risk measures for multi-asset or network-based financial models. Our framework will make use of the n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2023-10, Vol.33 (5), p.3418
Hauptverfasser: Ararat, Çağın, Ma, Jin, Wu, Wenqian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 3418
container_title The Annals of applied probability
container_volume 33
creator Ararat, Çağın
Ma, Jin
Wu, Wenqian
description In this paper, we establish an analytic framework for studying set-valued backward stochastic differential equations (set-valued BSDE), motivated largely by the current studies of dynamic set-valued risk measures for multi-asset or network-based financial models. Our framework will make use of the notion of the Hukuhara difference between sets, in order to compensate the lack of "inverse" operation of the traditional Minkowski addition, whence the vector space structure in set-valued analysis. While proving the well-posedness of a class of set-valued BSDEs, we shall also address some fundamental issues regarding generalized Aumann–Itô integrals, especially when it is connected to the martingale representation theorem. In particular, we propose some necessary extensions of the integral that can be used to represent set-valued martingales with nonsingleton initial values. This extension turns out to be essential for the study of set-valued BSDEs.
doi_str_mv 10.1214/22-AAP1896
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2890435328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2890435328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-dcdf817ebfeca317854ad026ef2d1bc4fcef4d79d41671cbf1674aed2476c0083</originalsourceid><addsrcrecordid>eNotkEFLwzAYhoMoWKcXf0HBmxDNl6RNeixDpzBQUM8hTb5g52y3JFX8925sp-fy8L7wEHIN7A44yHvOadu-gm7qE1JwqDXVSqhTUgCrGK2glufkIqUVY6yRjSpI9YaZ_tj1hL7srPv6tdGXKY_u06bcu9L3IWDEIfd2XeJ2srkfh3RJzoJdJ7w6ckY-Hh_e5090-bJ4nrdL6njVZOqdDxoUdgGdFaB0Ja1nvMbAPXROBodBetV4CbUC14UdpEXPpaodY1rMyM1hdxPH7YQpm9U4xWF3abhumBSV4Hvr9mC5OKYUMZhN7L9t_DPAzD6L4dwcs4h_sAVVKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890435328</pqid></control><display><type>article</type><title>Set-valued backward stochastic differential equations</title><source>Project Euclid Complete</source><creator>Ararat, Çağın ; Ma, Jin ; Wu, Wenqian</creator><creatorcontrib>Ararat, Çağın ; Ma, Jin ; Wu, Wenqian</creatorcontrib><description>In this paper, we establish an analytic framework for studying set-valued backward stochastic differential equations (set-valued BSDE), motivated largely by the current studies of dynamic set-valued risk measures for multi-asset or network-based financial models. Our framework will make use of the notion of the Hukuhara difference between sets, in order to compensate the lack of "inverse" operation of the traditional Minkowski addition, whence the vector space structure in set-valued analysis. While proving the well-posedness of a class of set-valued BSDEs, we shall also address some fundamental issues regarding generalized Aumann–Itô integrals, especially when it is connected to the martingale representation theorem. In particular, we propose some necessary extensions of the integral that can be used to represent set-valued martingales with nonsingleton initial values. This extension turns out to be essential for the study of set-valued BSDEs.</description><identifier>ISSN: 1050-5164</identifier><identifier>EISSN: 2168-8737</identifier><identifier>DOI: 10.1214/22-AAP1896</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Differential equations ; Martingales ; Risk assessment ; Stochastic models ; Theorems ; Vector spaces</subject><ispartof>The Annals of applied probability, 2023-10, Vol.33 (5), p.3418</ispartof><rights>Copyright Institute of Mathematical Statistics Oct 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-dcdf817ebfeca317854ad026ef2d1bc4fcef4d79d41671cbf1674aed2476c0083</citedby><cites>FETCH-LOGICAL-c259t-dcdf817ebfeca317854ad026ef2d1bc4fcef4d79d41671cbf1674aed2476c0083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ararat, Çağın</creatorcontrib><creatorcontrib>Ma, Jin</creatorcontrib><creatorcontrib>Wu, Wenqian</creatorcontrib><title>Set-valued backward stochastic differential equations</title><title>The Annals of applied probability</title><description>In this paper, we establish an analytic framework for studying set-valued backward stochastic differential equations (set-valued BSDE), motivated largely by the current studies of dynamic set-valued risk measures for multi-asset or network-based financial models. Our framework will make use of the notion of the Hukuhara difference between sets, in order to compensate the lack of "inverse" operation of the traditional Minkowski addition, whence the vector space structure in set-valued analysis. While proving the well-posedness of a class of set-valued BSDEs, we shall also address some fundamental issues regarding generalized Aumann–Itô integrals, especially when it is connected to the martingale representation theorem. In particular, we propose some necessary extensions of the integral that can be used to represent set-valued martingales with nonsingleton initial values. This extension turns out to be essential for the study of set-valued BSDEs.</description><subject>Differential equations</subject><subject>Martingales</subject><subject>Risk assessment</subject><subject>Stochastic models</subject><subject>Theorems</subject><subject>Vector spaces</subject><issn>1050-5164</issn><issn>2168-8737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkEFLwzAYhoMoWKcXf0HBmxDNl6RNeixDpzBQUM8hTb5g52y3JFX8925sp-fy8L7wEHIN7A44yHvOadu-gm7qE1JwqDXVSqhTUgCrGK2glufkIqUVY6yRjSpI9YaZ_tj1hL7srPv6tdGXKY_u06bcu9L3IWDEIfd2XeJ2srkfh3RJzoJdJ7w6ckY-Hh_e5090-bJ4nrdL6njVZOqdDxoUdgGdFaB0Ja1nvMbAPXROBodBetV4CbUC14UdpEXPpaodY1rMyM1hdxPH7YQpm9U4xWF3abhumBSV4Hvr9mC5OKYUMZhN7L9t_DPAzD6L4dwcs4h_sAVVKA</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Ararat, Çağın</creator><creator>Ma, Jin</creator><creator>Wu, Wenqian</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20231001</creationdate><title>Set-valued backward stochastic differential equations</title><author>Ararat, Çağın ; Ma, Jin ; Wu, Wenqian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-dcdf817ebfeca317854ad026ef2d1bc4fcef4d79d41671cbf1674aed2476c0083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Differential equations</topic><topic>Martingales</topic><topic>Risk assessment</topic><topic>Stochastic models</topic><topic>Theorems</topic><topic>Vector spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ararat, Çağın</creatorcontrib><creatorcontrib>Ma, Jin</creatorcontrib><creatorcontrib>Wu, Wenqian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ararat, Çağın</au><au>Ma, Jin</au><au>Wu, Wenqian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Set-valued backward stochastic differential equations</atitle><jtitle>The Annals of applied probability</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>33</volume><issue>5</issue><spage>3418</spage><pages>3418-</pages><issn>1050-5164</issn><eissn>2168-8737</eissn><abstract>In this paper, we establish an analytic framework for studying set-valued backward stochastic differential equations (set-valued BSDE), motivated largely by the current studies of dynamic set-valued risk measures for multi-asset or network-based financial models. Our framework will make use of the notion of the Hukuhara difference between sets, in order to compensate the lack of "inverse" operation of the traditional Minkowski addition, whence the vector space structure in set-valued analysis. While proving the well-posedness of a class of set-valued BSDEs, we shall also address some fundamental issues regarding generalized Aumann–Itô integrals, especially when it is connected to the martingale representation theorem. In particular, we propose some necessary extensions of the integral that can be used to represent set-valued martingales with nonsingleton initial values. This extension turns out to be essential for the study of set-valued BSDEs.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/22-AAP1896</doi></addata></record>
fulltext fulltext
identifier ISSN: 1050-5164
ispartof The Annals of applied probability, 2023-10, Vol.33 (5), p.3418
issn 1050-5164
2168-8737
language eng
recordid cdi_proquest_journals_2890435328
source Project Euclid Complete
subjects Differential equations
Martingales
Risk assessment
Stochastic models
Theorems
Vector spaces
title Set-valued backward stochastic differential equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A25%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Set-valued%20backward%20stochastic%20differential%20equations&rft.jtitle=The%20Annals%20of%20applied%20probability&rft.au=Ararat,%20%C3%87a%C4%9F%C4%B1n&rft.date=2023-10-01&rft.volume=33&rft.issue=5&rft.spage=3418&rft.pages=3418-&rft.issn=1050-5164&rft.eissn=2168-8737&rft_id=info:doi/10.1214/22-AAP1896&rft_dat=%3Cproquest_cross%3E2890435328%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890435328&rft_id=info:pmid/&rfr_iscdi=true