On minimal Gorenstein Hilbert functions

We conjecture that a class of Artinian Gorenstein Hilbert algebras called full Perazzo algebras always have minimal Hilbert function, fixing codimension and length. We prove the conjecture in length four and five, in low codimension. We also prove the conjecture for a particular subclass of algebras...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2024, Vol.118 (1), Article 29
Hauptverfasser: Bezerra, Lenin, Gondim, Rodrigo, Ilardi, Giovanna, Zappalà, Giuseppe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas
container_volume 118
creator Bezerra, Lenin
Gondim, Rodrigo
Ilardi, Giovanna
Zappalà, Giuseppe
description We conjecture that a class of Artinian Gorenstein Hilbert algebras called full Perazzo algebras always have minimal Hilbert function, fixing codimension and length. We prove the conjecture in length four and five, in low codimension. We also prove the conjecture for a particular subclass of algebras that occurs in every length and certain codimensions. As a consequence of our methods we give a new proof of part of a known result about the asymptotic behavior of the minimum entry of a Gorenstein Hilbert function.
doi_str_mv 10.1007/s13398-023-01523-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2890399374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2890399374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-2eb586f362b2a748e733674edc10271857c06781dd4def7126eddb2f6b579feb3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EElXpH2CKxMBkOPsS2xlRBS1SpS4wW_k4o1SpU-xk4N9jGiQ2bri74X3v42HsVsCDANCPUSCWhoNEDqJIWV2whSh0yUUBxeW5N1wj4DVbxXiAFChyA3rB7vc-O3a-O1Z9thkC-ThS57Nt19cUxsxNvhm7wccbduWqPtLqty7Z-8vz23rLd_vN6_ppxxtUOHJJdWGUQyVrWenckEZUOqe2ESC1MIVuQGkj2jZvyWkhFbVtLZ2q07mOalyyu3nuKQyfE8XRHoYp-LTSSlMCliXqPKnkrGrCEGMgZ08hvRC-rAD7w8TOTGxiYs9MrEomnE0xif0Hhb_R_7i-AXYFYmc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890399374</pqid></control><display><type>article</type><title>On minimal Gorenstein Hilbert functions</title><source>SpringerLink Journals</source><creator>Bezerra, Lenin ; Gondim, Rodrigo ; Ilardi, Giovanna ; Zappalà, Giuseppe</creator><creatorcontrib>Bezerra, Lenin ; Gondim, Rodrigo ; Ilardi, Giovanna ; Zappalà, Giuseppe</creatorcontrib><description>We conjecture that a class of Artinian Gorenstein Hilbert algebras called full Perazzo algebras always have minimal Hilbert function, fixing codimension and length. We prove the conjecture in length four and five, in low codimension. We also prove the conjecture for a particular subclass of algebras that occurs in every length and certain codimensions. As a consequence of our methods we give a new proof of part of a known result about the asymptotic behavior of the minimum entry of a Gorenstein Hilbert function.</description><identifier>ISSN: 1578-7303</identifier><identifier>EISSN: 1579-1505</identifier><identifier>DOI: 10.1007/s13398-023-01523-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Applications of Mathematics ; Asymptotic properties ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Original Paper ; Theoretical</subject><ispartof>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2024, Vol.118 (1), Article 29</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-2eb586f362b2a748e733674edc10271857c06781dd4def7126eddb2f6b579feb3</citedby><cites>FETCH-LOGICAL-c363t-2eb586f362b2a748e733674edc10271857c06781dd4def7126eddb2f6b579feb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13398-023-01523-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13398-023-01523-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bezerra, Lenin</creatorcontrib><creatorcontrib>Gondim, Rodrigo</creatorcontrib><creatorcontrib>Ilardi, Giovanna</creatorcontrib><creatorcontrib>Zappalà, Giuseppe</creatorcontrib><title>On minimal Gorenstein Hilbert functions</title><title>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</title><addtitle>Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat</addtitle><description>We conjecture that a class of Artinian Gorenstein Hilbert algebras called full Perazzo algebras always have minimal Hilbert function, fixing codimension and length. We prove the conjecture in length four and five, in low codimension. We also prove the conjecture for a particular subclass of algebras that occurs in every length and certain codimensions. As a consequence of our methods we give a new proof of part of a known result about the asymptotic behavior of the minimum entry of a Gorenstein Hilbert function.</description><subject>Algebra</subject><subject>Applications of Mathematics</subject><subject>Asymptotic properties</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Theoretical</subject><issn>1578-7303</issn><issn>1579-1505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kD1PwzAQhi0EElXpH2CKxMBkOPsS2xlRBS1SpS4wW_k4o1SpU-xk4N9jGiQ2bri74X3v42HsVsCDANCPUSCWhoNEDqJIWV2whSh0yUUBxeW5N1wj4DVbxXiAFChyA3rB7vc-O3a-O1Z9thkC-ThS57Nt19cUxsxNvhm7wccbduWqPtLqty7Z-8vz23rLd_vN6_ppxxtUOHJJdWGUQyVrWenckEZUOqe2ESC1MIVuQGkj2jZvyWkhFbVtLZ2q07mOalyyu3nuKQyfE8XRHoYp-LTSSlMCliXqPKnkrGrCEGMgZ08hvRC-rAD7w8TOTGxiYs9MrEomnE0xif0Hhb_R_7i-AXYFYmc</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Bezerra, Lenin</creator><creator>Gondim, Rodrigo</creator><creator>Ilardi, Giovanna</creator><creator>Zappalà, Giuseppe</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2024</creationdate><title>On minimal Gorenstein Hilbert functions</title><author>Bezerra, Lenin ; Gondim, Rodrigo ; Ilardi, Giovanna ; Zappalà, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-2eb586f362b2a748e733674edc10271857c06781dd4def7126eddb2f6b579feb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Applications of Mathematics</topic><topic>Asymptotic properties</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bezerra, Lenin</creatorcontrib><creatorcontrib>Gondim, Rodrigo</creatorcontrib><creatorcontrib>Ilardi, Giovanna</creatorcontrib><creatorcontrib>Zappalà, Giuseppe</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bezerra, Lenin</au><au>Gondim, Rodrigo</au><au>Ilardi, Giovanna</au><au>Zappalà, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On minimal Gorenstein Hilbert functions</atitle><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle><stitle>Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat</stitle><date>2024</date><risdate>2024</risdate><volume>118</volume><issue>1</issue><artnum>29</artnum><issn>1578-7303</issn><eissn>1579-1505</eissn><abstract>We conjecture that a class of Artinian Gorenstein Hilbert algebras called full Perazzo algebras always have minimal Hilbert function, fixing codimension and length. We prove the conjecture in length four and five, in low codimension. We also prove the conjecture for a particular subclass of algebras that occurs in every length and certain codimensions. As a consequence of our methods we give a new proof of part of a known result about the asymptotic behavior of the minimum entry of a Gorenstein Hilbert function.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13398-023-01523-6</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1578-7303
ispartof Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2024, Vol.118 (1), Article 29
issn 1578-7303
1579-1505
language eng
recordid cdi_proquest_journals_2890399374
source SpringerLink Journals
subjects Algebra
Applications of Mathematics
Asymptotic properties
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Original Paper
Theoretical
title On minimal Gorenstein Hilbert functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A43%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20minimal%20Gorenstein%20Hilbert%20functions&rft.jtitle=Revista%20de%20la%20Real%20Academia%20de%20Ciencias%20Exactas,%20F%C3%ADsicas%20y%20Naturales.%20Serie%20A,%20Matem%C3%A1ticas&rft.au=Bezerra,%20Lenin&rft.date=2024&rft.volume=118&rft.issue=1&rft.artnum=29&rft.issn=1578-7303&rft.eissn=1579-1505&rft_id=info:doi/10.1007/s13398-023-01523-6&rft_dat=%3Cproquest_cross%3E2890399374%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890399374&rft_id=info:pmid/&rfr_iscdi=true