On minimal Gorenstein Hilbert functions
We conjecture that a class of Artinian Gorenstein Hilbert algebras called full Perazzo algebras always have minimal Hilbert function, fixing codimension and length. We prove the conjecture in length four and five, in low codimension. We also prove the conjecture for a particular subclass of algebras...
Gespeichert in:
Veröffentlicht in: | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2024, Vol.118 (1), Article 29 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas |
container_volume | 118 |
creator | Bezerra, Lenin Gondim, Rodrigo Ilardi, Giovanna Zappalà, Giuseppe |
description | We conjecture that a class of Artinian Gorenstein Hilbert algebras called full Perazzo algebras always have minimal Hilbert function, fixing codimension and length. We prove the conjecture in length four and five, in low codimension. We also prove the conjecture for a particular subclass of algebras that occurs in every length and certain codimensions. As a consequence of our methods we give a new proof of part of a known result about the asymptotic behavior of the minimum entry of a Gorenstein Hilbert function. |
doi_str_mv | 10.1007/s13398-023-01523-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2890399374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2890399374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-2eb586f362b2a748e733674edc10271857c06781dd4def7126eddb2f6b579feb3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EElXpH2CKxMBkOPsS2xlRBS1SpS4wW_k4o1SpU-xk4N9jGiQ2bri74X3v42HsVsCDANCPUSCWhoNEDqJIWV2whSh0yUUBxeW5N1wj4DVbxXiAFChyA3rB7vc-O3a-O1Z9thkC-ThS57Nt19cUxsxNvhm7wccbduWqPtLqty7Z-8vz23rLd_vN6_ppxxtUOHJJdWGUQyVrWenckEZUOqe2ESC1MIVuQGkj2jZvyWkhFbVtLZ2q07mOalyyu3nuKQyfE8XRHoYp-LTSSlMCliXqPKnkrGrCEGMgZ08hvRC-rAD7w8TOTGxiYs9MrEomnE0xif0Hhb_R_7i-AXYFYmc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890399374</pqid></control><display><type>article</type><title>On minimal Gorenstein Hilbert functions</title><source>SpringerLink Journals</source><creator>Bezerra, Lenin ; Gondim, Rodrigo ; Ilardi, Giovanna ; Zappalà, Giuseppe</creator><creatorcontrib>Bezerra, Lenin ; Gondim, Rodrigo ; Ilardi, Giovanna ; Zappalà, Giuseppe</creatorcontrib><description>We conjecture that a class of Artinian Gorenstein Hilbert algebras called full Perazzo algebras always have minimal Hilbert function, fixing codimension and length. We prove the conjecture in length four and five, in low codimension. We also prove the conjecture for a particular subclass of algebras that occurs in every length and certain codimensions. As a consequence of our methods we give a new proof of part of a known result about the asymptotic behavior of the minimum entry of a Gorenstein Hilbert function.</description><identifier>ISSN: 1578-7303</identifier><identifier>EISSN: 1579-1505</identifier><identifier>DOI: 10.1007/s13398-023-01523-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Applications of Mathematics ; Asymptotic properties ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Original Paper ; Theoretical</subject><ispartof>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2024, Vol.118 (1), Article 29</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-2eb586f362b2a748e733674edc10271857c06781dd4def7126eddb2f6b579feb3</citedby><cites>FETCH-LOGICAL-c363t-2eb586f362b2a748e733674edc10271857c06781dd4def7126eddb2f6b579feb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13398-023-01523-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13398-023-01523-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bezerra, Lenin</creatorcontrib><creatorcontrib>Gondim, Rodrigo</creatorcontrib><creatorcontrib>Ilardi, Giovanna</creatorcontrib><creatorcontrib>Zappalà, Giuseppe</creatorcontrib><title>On minimal Gorenstein Hilbert functions</title><title>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</title><addtitle>Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat</addtitle><description>We conjecture that a class of Artinian Gorenstein Hilbert algebras called full Perazzo algebras always have minimal Hilbert function, fixing codimension and length. We prove the conjecture in length four and five, in low codimension. We also prove the conjecture for a particular subclass of algebras that occurs in every length and certain codimensions. As a consequence of our methods we give a new proof of part of a known result about the asymptotic behavior of the minimum entry of a Gorenstein Hilbert function.</description><subject>Algebra</subject><subject>Applications of Mathematics</subject><subject>Asymptotic properties</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Theoretical</subject><issn>1578-7303</issn><issn>1579-1505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kD1PwzAQhi0EElXpH2CKxMBkOPsS2xlRBS1SpS4wW_k4o1SpU-xk4N9jGiQ2bri74X3v42HsVsCDANCPUSCWhoNEDqJIWV2whSh0yUUBxeW5N1wj4DVbxXiAFChyA3rB7vc-O3a-O1Z9thkC-ThS57Nt19cUxsxNvhm7wccbduWqPtLqty7Z-8vz23rLd_vN6_ppxxtUOHJJdWGUQyVrWenckEZUOqe2ESC1MIVuQGkj2jZvyWkhFbVtLZ2q07mOalyyu3nuKQyfE8XRHoYp-LTSSlMCliXqPKnkrGrCEGMgZ08hvRC-rAD7w8TOTGxiYs9MrEomnE0xif0Hhb_R_7i-AXYFYmc</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Bezerra, Lenin</creator><creator>Gondim, Rodrigo</creator><creator>Ilardi, Giovanna</creator><creator>Zappalà, Giuseppe</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2024</creationdate><title>On minimal Gorenstein Hilbert functions</title><author>Bezerra, Lenin ; Gondim, Rodrigo ; Ilardi, Giovanna ; Zappalà, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-2eb586f362b2a748e733674edc10271857c06781dd4def7126eddb2f6b579feb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Applications of Mathematics</topic><topic>Asymptotic properties</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bezerra, Lenin</creatorcontrib><creatorcontrib>Gondim, Rodrigo</creatorcontrib><creatorcontrib>Ilardi, Giovanna</creatorcontrib><creatorcontrib>Zappalà, Giuseppe</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bezerra, Lenin</au><au>Gondim, Rodrigo</au><au>Ilardi, Giovanna</au><au>Zappalà, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On minimal Gorenstein Hilbert functions</atitle><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle><stitle>Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat</stitle><date>2024</date><risdate>2024</risdate><volume>118</volume><issue>1</issue><artnum>29</artnum><issn>1578-7303</issn><eissn>1579-1505</eissn><abstract>We conjecture that a class of Artinian Gorenstein Hilbert algebras called full Perazzo algebras always have minimal Hilbert function, fixing codimension and length. We prove the conjecture in length four and five, in low codimension. We also prove the conjecture for a particular subclass of algebras that occurs in every length and certain codimensions. As a consequence of our methods we give a new proof of part of a known result about the asymptotic behavior of the minimum entry of a Gorenstein Hilbert function.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13398-023-01523-6</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1578-7303 |
ispartof | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2024, Vol.118 (1), Article 29 |
issn | 1578-7303 1579-1505 |
language | eng |
recordid | cdi_proquest_journals_2890399374 |
source | SpringerLink Journals |
subjects | Algebra Applications of Mathematics Asymptotic properties Mathematical and Computational Physics Mathematics Mathematics and Statistics Original Paper Theoretical |
title | On minimal Gorenstein Hilbert functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A43%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20minimal%20Gorenstein%20Hilbert%20functions&rft.jtitle=Revista%20de%20la%20Real%20Academia%20de%20Ciencias%20Exactas,%20F%C3%ADsicas%20y%20Naturales.%20Serie%20A,%20Matem%C3%A1ticas&rft.au=Bezerra,%20Lenin&rft.date=2024&rft.volume=118&rft.issue=1&rft.artnum=29&rft.issn=1578-7303&rft.eissn=1579-1505&rft_id=info:doi/10.1007/s13398-023-01523-6&rft_dat=%3Cproquest_cross%3E2890399374%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890399374&rft_id=info:pmid/&rfr_iscdi=true |