An integral model for high‐accuracy and low‐accuracy experiments

A growing trend in engineering and science is to use multiple computer codes with different levels of accuracy to study the same complex system. Strategies are needed to combine the simulation results obtained at different levels of accuracy to produce an efficient surrogate model for prediction. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stat (International Statistical Institute) 2022-12, Vol.11 (1), p.n/a
Hauptverfasser: Qi, Guanying, Liu, Min‐Qian, Yang, Jian‐Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Stat (International Statistical Institute)
container_volume 11
creator Qi, Guanying
Liu, Min‐Qian
Yang, Jian‐Feng
description A growing trend in engineering and science is to use multiple computer codes with different levels of accuracy to study the same complex system. Strategies are needed to combine the simulation results obtained at different levels of accuracy to produce an efficient surrogate model for prediction. In this paper, we propose an integral model to borrow as much information as possible from the low‐accuracy experiment. We ignore the Markov property assumed before and model the high‐accuracy experiment based on an integral form of the low‐accuracy experiment. The proposed model is more general thus better predictions are expected. Two explicit forms of some matrices and vectors used in our predictions are given. The effectiveness of the proposed model is illustrated with several examples.
doi_str_mv 10.1002/sta4.531
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2890387379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2890387379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1841-d22356d9f4394ab8b67f5e11b088127a9f9fa8448fef1da7a9178788b91d372e3</originalsourceid><addsrcrecordid>eNp1kE1qwzAQRkVpoSEN9AiGbrpxqpFkS1qa9BcCXTRdC9mWEgfHdiWb1LseoWfsSWrjLrLpaoaPxzfDQ-ga8BIwJne-1WwZUThDM4KZDCHi9Pxkv0QL7_cYY4iIpDGdofukCoqqNVuny-BQ56YMbO2CXbHd_Xx96yzrnM76QFd5UNbH08h8NsYVB1O1_gpdWF16s_ibc_T--LBZPYfr16eXVbIOMxAMwpwQGsW5tIxKplORxtxGBiDFQgDhWlpptWBMWGMh10MAXHAhUgk55cTQObqZehtXf3TGt2pfd64aTioiJKaCUy4H6naiMld774xVzfCndr0CrEZNatSkBk0DGk7osShN_y-n3jYJG_lfksNpjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890387379</pqid></control><display><type>article</type><title>An integral model for high‐accuracy and low‐accuracy experiments</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Qi, Guanying ; Liu, Min‐Qian ; Yang, Jian‐Feng</creator><creatorcontrib>Qi, Guanying ; Liu, Min‐Qian ; Yang, Jian‐Feng</creatorcontrib><description>A growing trend in engineering and science is to use multiple computer codes with different levels of accuracy to study the same complex system. Strategies are needed to combine the simulation results obtained at different levels of accuracy to produce an efficient surrogate model for prediction. In this paper, we propose an integral model to borrow as much information as possible from the low‐accuracy experiment. We ignore the Markov property assumed before and model the high‐accuracy experiment based on an integral form of the low‐accuracy experiment. The proposed model is more general thus better predictions are expected. Two explicit forms of some matrices and vectors used in our predictions are given. The effectiveness of the proposed model is illustrated with several examples.</description><identifier>ISSN: 2049-1573</identifier><identifier>EISSN: 2049-1573</identifier><identifier>DOI: 10.1002/sta4.531</identifier><language>eng</language><publisher>The Hague: Wiley Subscription Services, Inc</publisher><subject>Complex systems ; computer experiment ; Gaussian process model ; Kriging ; Mathematical analysis ; Model accuracy ; nested space‐filling design</subject><ispartof>Stat (International Statistical Institute), 2022-12, Vol.11 (1), p.n/a</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1841-d22356d9f4394ab8b67f5e11b088127a9f9fa8448fef1da7a9178788b91d372e3</cites><orcidid>0000-0002-2271-4798</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsta4.531$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsta4.531$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Qi, Guanying</creatorcontrib><creatorcontrib>Liu, Min‐Qian</creatorcontrib><creatorcontrib>Yang, Jian‐Feng</creatorcontrib><title>An integral model for high‐accuracy and low‐accuracy experiments</title><title>Stat (International Statistical Institute)</title><description>A growing trend in engineering and science is to use multiple computer codes with different levels of accuracy to study the same complex system. Strategies are needed to combine the simulation results obtained at different levels of accuracy to produce an efficient surrogate model for prediction. In this paper, we propose an integral model to borrow as much information as possible from the low‐accuracy experiment. We ignore the Markov property assumed before and model the high‐accuracy experiment based on an integral form of the low‐accuracy experiment. The proposed model is more general thus better predictions are expected. Two explicit forms of some matrices and vectors used in our predictions are given. The effectiveness of the proposed model is illustrated with several examples.</description><subject>Complex systems</subject><subject>computer experiment</subject><subject>Gaussian process model</subject><subject>Kriging</subject><subject>Mathematical analysis</subject><subject>Model accuracy</subject><subject>nested space‐filling design</subject><issn>2049-1573</issn><issn>2049-1573</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1qwzAQRkVpoSEN9AiGbrpxqpFkS1qa9BcCXTRdC9mWEgfHdiWb1LseoWfsSWrjLrLpaoaPxzfDQ-ga8BIwJne-1WwZUThDM4KZDCHi9Pxkv0QL7_cYY4iIpDGdofukCoqqNVuny-BQ56YMbO2CXbHd_Xx96yzrnM76QFd5UNbH08h8NsYVB1O1_gpdWF16s_ibc_T--LBZPYfr16eXVbIOMxAMwpwQGsW5tIxKplORxtxGBiDFQgDhWlpptWBMWGMh10MAXHAhUgk55cTQObqZehtXf3TGt2pfd64aTioiJKaCUy4H6naiMld774xVzfCndr0CrEZNatSkBk0DGk7osShN_y-n3jYJG_lfksNpjQ</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Qi, Guanying</creator><creator>Liu, Min‐Qian</creator><creator>Yang, Jian‐Feng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2271-4798</orcidid></search><sort><creationdate>202212</creationdate><title>An integral model for high‐accuracy and low‐accuracy experiments</title><author>Qi, Guanying ; Liu, Min‐Qian ; Yang, Jian‐Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1841-d22356d9f4394ab8b67f5e11b088127a9f9fa8448fef1da7a9178788b91d372e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Complex systems</topic><topic>computer experiment</topic><topic>Gaussian process model</topic><topic>Kriging</topic><topic>Mathematical analysis</topic><topic>Model accuracy</topic><topic>nested space‐filling design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Guanying</creatorcontrib><creatorcontrib>Liu, Min‐Qian</creatorcontrib><creatorcontrib>Yang, Jian‐Feng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Stat (International Statistical Institute)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Guanying</au><au>Liu, Min‐Qian</au><au>Yang, Jian‐Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An integral model for high‐accuracy and low‐accuracy experiments</atitle><jtitle>Stat (International Statistical Institute)</jtitle><date>2022-12</date><risdate>2022</risdate><volume>11</volume><issue>1</issue><epage>n/a</epage><issn>2049-1573</issn><eissn>2049-1573</eissn><abstract>A growing trend in engineering and science is to use multiple computer codes with different levels of accuracy to study the same complex system. Strategies are needed to combine the simulation results obtained at different levels of accuracy to produce an efficient surrogate model for prediction. In this paper, we propose an integral model to borrow as much information as possible from the low‐accuracy experiment. We ignore the Markov property assumed before and model the high‐accuracy experiment based on an integral form of the low‐accuracy experiment. The proposed model is more general thus better predictions are expected. Two explicit forms of some matrices and vectors used in our predictions are given. The effectiveness of the proposed model is illustrated with several examples.</abstract><cop>The Hague</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/sta4.531</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2271-4798</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2049-1573
ispartof Stat (International Statistical Institute), 2022-12, Vol.11 (1), p.n/a
issn 2049-1573
2049-1573
language eng
recordid cdi_proquest_journals_2890387379
source Wiley Online Library - AutoHoldings Journals
subjects Complex systems
computer experiment
Gaussian process model
Kriging
Mathematical analysis
Model accuracy
nested space‐filling design
title An integral model for high‐accuracy and low‐accuracy experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T08%3A32%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20integral%20model%20for%20high%E2%80%90accuracy%20and%20low%E2%80%90accuracy%20experiments&rft.jtitle=Stat%20(International%20Statistical%20Institute)&rft.au=Qi,%20Guanying&rft.date=2022-12&rft.volume=11&rft.issue=1&rft.epage=n/a&rft.issn=2049-1573&rft.eissn=2049-1573&rft_id=info:doi/10.1002/sta4.531&rft_dat=%3Cproquest_cross%3E2890387379%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890387379&rft_id=info:pmid/&rfr_iscdi=true