General Closed-Form Transfer Function Expressions for Fast Filter Bank

The existing literature focuses on the applications of fast filter bank due to its excellent frequency responses with low complexity. However, the topic is not addressed related to the general transfer function expressions of the corresponding subfilters for a specific channel. To do this, in this p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2023/10/01, Vol.E106.A(10), pp.1354-1357
Hauptverfasser: HAO, Jinguang, WANG, Gang, HongWANG, Gang, WANG, Lili, LIU, Xuefeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1357
container_issue 10
container_start_page 1354
container_title IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
container_volume E106.A
creator HAO, Jinguang
WANG, Gang
HongWANG, Gang
WANG, Lili
LIU, Xuefeng
description The existing literature focuses on the applications of fast filter bank due to its excellent frequency responses with low complexity. However, the topic is not addressed related to the general transfer function expressions of the corresponding subfilters for a specific channel. To do this, in this paper, general closed-form transfer function expressions for fast filter bank are derived. Firstly, the cascaded structure of fast filter bank is modelled by a binary tree, with which the index of the subfilter at each stage within the channel can be determined. Then the transfer functions for the two outputs of a subfilter are expressed in a unified form. Finally, the general closed-form transfer functions for the channel and its corresponding subfilters are obtained by variables replacement if the prototype lowpass filters for the stages are given. Analytical results and simulations verify the general expressions. With such closed-form expressions lend themselves easily to analysis and direct computation of the transfer functions and the frequency responses without the structure graph.
doi_str_mv 10.1587/transfun.2023EAL2004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2889889446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889889446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-ff9a006dce73ee15f289c8d84a2f94d26dc02ad18e39419c1b16f879adc122503</originalsourceid><addsrcrecordid>eNpNkFFLwzAUhYMoOKf_wIeCz525Sdomj3O0Uxj44HwOMU10s0tnkoL-ezOnc3DhXjjnfBcOQteAJ1Dw6jZ65YId3IRgQuvpgmDMTtAIKlbkQGl1ikZYQJnzAvNzdBHCGmPgBNgINXPjjFddNuv6YNq86f0mW_7wjM-awem46l1Wf269CSGdIbN9ElSIWbPqYjLdKfd-ic6s6oK5-t1j9NzUy9l9vnicP8ymi1yzisbcWqEwLlttKmoMFJZwoXnLmSJWsJYkBRPVAjdUMBAaXqC0vBKq1UBIgekY3ey5W99_DCZEue4H79JLSTgXaRgrk4vtXdr3IXhj5davNsp_ScBy15j8a0weNZZiT_vYOkT1ag4h5eNKd-Y_VAMu5XQH-72OKAe3flNeGke_AWU3ffs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889889446</pqid></control><display><type>article</type><title>General Closed-Form Transfer Function Expressions for Fast Filter Bank</title><source>J-STAGE Free</source><creator>HAO, Jinguang ; WANG, Gang ; HongWANG, Gang ; WANG, Lili ; LIU, Xuefeng</creator><creatorcontrib>HAO, Jinguang ; WANG, Gang ; HongWANG, Gang ; WANG, Lili ; LIU, Xuefeng</creatorcontrib><description>The existing literature focuses on the applications of fast filter bank due to its excellent frequency responses with low complexity. However, the topic is not addressed related to the general transfer function expressions of the corresponding subfilters for a specific channel. To do this, in this paper, general closed-form transfer function expressions for fast filter bank are derived. Firstly, the cascaded structure of fast filter bank is modelled by a binary tree, with which the index of the subfilter at each stage within the channel can be determined. Then the transfer functions for the two outputs of a subfilter are expressed in a unified form. Finally, the general closed-form transfer functions for the channel and its corresponding subfilters are obtained by variables replacement if the prototype lowpass filters for the stages are given. Analytical results and simulations verify the general expressions. With such closed-form expressions lend themselves easily to analysis and direct computation of the transfer functions and the frequency responses without the structure graph.</description><identifier>ISSN: 0916-8508</identifier><identifier>EISSN: 1745-1337</identifier><identifier>DOI: 10.1587/transfun.2023EAL2004</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>binary tree ; bit reversed order ; Closed form solutions ; closed-form expression ; Exact solutions ; fast filter bank ; Filter banks ; Low pass filters ; prototype lowpass filter ; transfer function ; Transfer functions</subject><ispartof>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2023/10/01, Vol.E106.A(10), pp.1354-1357</ispartof><rights>2023 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c473t-ff9a006dce73ee15f289c8d84a2f94d26dc02ad18e39419c1b16f879adc122503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1881,27915,27916</link.rule.ids></links><search><creatorcontrib>HAO, Jinguang</creatorcontrib><creatorcontrib>WANG, Gang</creatorcontrib><creatorcontrib>HongWANG, Gang</creatorcontrib><creatorcontrib>WANG, Lili</creatorcontrib><creatorcontrib>LIU, Xuefeng</creatorcontrib><title>General Closed-Form Transfer Function Expressions for Fast Filter Bank</title><title>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</title><addtitle>IEICE Trans. Fundamentals</addtitle><description>The existing literature focuses on the applications of fast filter bank due to its excellent frequency responses with low complexity. However, the topic is not addressed related to the general transfer function expressions of the corresponding subfilters for a specific channel. To do this, in this paper, general closed-form transfer function expressions for fast filter bank are derived. Firstly, the cascaded structure of fast filter bank is modelled by a binary tree, with which the index of the subfilter at each stage within the channel can be determined. Then the transfer functions for the two outputs of a subfilter are expressed in a unified form. Finally, the general closed-form transfer functions for the channel and its corresponding subfilters are obtained by variables replacement if the prototype lowpass filters for the stages are given. Analytical results and simulations verify the general expressions. With such closed-form expressions lend themselves easily to analysis and direct computation of the transfer functions and the frequency responses without the structure graph.</description><subject>binary tree</subject><subject>bit reversed order</subject><subject>Closed form solutions</subject><subject>closed-form expression</subject><subject>Exact solutions</subject><subject>fast filter bank</subject><subject>Filter banks</subject><subject>Low pass filters</subject><subject>prototype lowpass filter</subject><subject>transfer function</subject><subject>Transfer functions</subject><issn>0916-8508</issn><issn>1745-1337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkFFLwzAUhYMoOKf_wIeCz525Sdomj3O0Uxj44HwOMU10s0tnkoL-ezOnc3DhXjjnfBcOQteAJ1Dw6jZ65YId3IRgQuvpgmDMTtAIKlbkQGl1ikZYQJnzAvNzdBHCGmPgBNgINXPjjFddNuv6YNq86f0mW_7wjM-awem46l1Wf269CSGdIbN9ElSIWbPqYjLdKfd-ic6s6oK5-t1j9NzUy9l9vnicP8ymi1yzisbcWqEwLlttKmoMFJZwoXnLmSJWsJYkBRPVAjdUMBAaXqC0vBKq1UBIgekY3ey5W99_DCZEue4H79JLSTgXaRgrk4vtXdr3IXhj5davNsp_ScBy15j8a0weNZZiT_vYOkT1ag4h5eNKd-Y_VAMu5XQH-72OKAe3flNeGke_AWU3ffs</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>HAO, Jinguang</creator><creator>WANG, Gang</creator><creator>HongWANG, Gang</creator><creator>WANG, Lili</creator><creator>LIU, Xuefeng</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20231001</creationdate><title>General Closed-Form Transfer Function Expressions for Fast Filter Bank</title><author>HAO, Jinguang ; WANG, Gang ; HongWANG, Gang ; WANG, Lili ; LIU, Xuefeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-ff9a006dce73ee15f289c8d84a2f94d26dc02ad18e39419c1b16f879adc122503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>binary tree</topic><topic>bit reversed order</topic><topic>Closed form solutions</topic><topic>closed-form expression</topic><topic>Exact solutions</topic><topic>fast filter bank</topic><topic>Filter banks</topic><topic>Low pass filters</topic><topic>prototype lowpass filter</topic><topic>transfer function</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HAO, Jinguang</creatorcontrib><creatorcontrib>WANG, Gang</creatorcontrib><creatorcontrib>HongWANG, Gang</creatorcontrib><creatorcontrib>WANG, Lili</creatorcontrib><creatorcontrib>LIU, Xuefeng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HAO, Jinguang</au><au>WANG, Gang</au><au>HongWANG, Gang</au><au>WANG, Lili</au><au>LIU, Xuefeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General Closed-Form Transfer Function Expressions for Fast Filter Bank</atitle><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle><addtitle>IEICE Trans. Fundamentals</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>E106.A</volume><issue>10</issue><spage>1354</spage><epage>1357</epage><pages>1354-1357</pages><artnum>2023EAL2004</artnum><issn>0916-8508</issn><eissn>1745-1337</eissn><abstract>The existing literature focuses on the applications of fast filter bank due to its excellent frequency responses with low complexity. However, the topic is not addressed related to the general transfer function expressions of the corresponding subfilters for a specific channel. To do this, in this paper, general closed-form transfer function expressions for fast filter bank are derived. Firstly, the cascaded structure of fast filter bank is modelled by a binary tree, with which the index of the subfilter at each stage within the channel can be determined. Then the transfer functions for the two outputs of a subfilter are expressed in a unified form. Finally, the general closed-form transfer functions for the channel and its corresponding subfilters are obtained by variables replacement if the prototype lowpass filters for the stages are given. Analytical results and simulations verify the general expressions. With such closed-form expressions lend themselves easily to analysis and direct computation of the transfer functions and the frequency responses without the structure graph.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transfun.2023EAL2004</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0916-8508
ispartof IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2023/10/01, Vol.E106.A(10), pp.1354-1357
issn 0916-8508
1745-1337
language eng
recordid cdi_proquest_journals_2889889446
source J-STAGE Free
subjects binary tree
bit reversed order
Closed form solutions
closed-form expression
Exact solutions
fast filter bank
Filter banks
Low pass filters
prototype lowpass filter
transfer function
Transfer functions
title General Closed-Form Transfer Function Expressions for Fast Filter Bank
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A48%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General%20Closed-Form%20Transfer%20Function%20Expressions%20for%20Fast%20Filter%20Bank&rft.jtitle=IEICE%20Transactions%20on%20Fundamentals%20of%20Electronics,%20Communications%20and%20Computer%20Sciences&rft.au=HAO,%20Jinguang&rft.date=2023-10-01&rft.volume=E106.A&rft.issue=10&rft.spage=1354&rft.epage=1357&rft.pages=1354-1357&rft.artnum=2023EAL2004&rft.issn=0916-8508&rft.eissn=1745-1337&rft_id=info:doi/10.1587/transfun.2023EAL2004&rft_dat=%3Cproquest_cross%3E2889889446%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889889446&rft_id=info:pmid/&rfr_iscdi=true