Efficient global crystal structure prediction using polynomial machine learning potential in the binary Al–Cu alloy system

Machine learning potentials (MLPs) are attracting much attention as powerful tools to accurately and efficiently perform atomistic simulations and crystal structure predictions. In this study, we develop a polynomial MLP for the Al–Cu system applicable to the robust global structure search and metas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Ceramic Society of Japan 2023/10/01, Vol.131(10), pp.762-766
Hauptverfasser: Wakai, Hayato, Seko, Atsuto, Tanaka, Isao
Format: Artikel
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 766
container_issue 10
container_start_page 762
container_title Journal of the Ceramic Society of Japan
container_volume 131
creator Wakai, Hayato
Seko, Atsuto
Tanaka, Isao
description Machine learning potentials (MLPs) are attracting much attention as powerful tools to accurately and efficiently perform atomistic simulations and crystal structure predictions. In this study, we develop a polynomial MLP for the Al–Cu system applicable to the robust global structure search and metastable structure enumeration. We then apply a combination of a global optimization method and the polynomial MLP to the Al–Cu alloy system. As a result of approximately 1010 times energy computations, the globally-stable and metastable structures are enumerated in the Al–Cu system.
doi_str_mv 10.2109/jcersj2.23053
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2889885752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889885752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2913-f669a7d1dccb58d86c18dd6ca8d7719d666d98b969e9170cad4abc444243126a3</originalsourceid><addsrcrecordid>eNo9kLFOwzAQhiMEEqUwsltiTontxLHHqmoBqRILzJFjO60j1wm2M0Ri4B14Q54Et6k6_Sfdd__d_UnyCLMFghl7boVyvkULhLMCXyUziHOakgIX17GmFKVZmePb5M77NssIyjGdJd_rptFCKxvAznQ1N0C40YeoPrhBhMEp0DsltQi6s2Dw2u5A35nRdgcdqQMXe20VMIo7O_VCNDu2tAVhr0CtLXcjWJq_n9_VALgx3Qh83KEO98lNw41XD2edJ5-b9cfqNd2-v7ytlttUIAZx2hDCeCmhFKIuqKREQColEZzKsoRMEkIkozUjTDFYZoLLnNciz_P4IkSE43nyNPn2rvsalA9V2w3OxpUVopRRWpQFilQ6UcJ13jvVVL3Th3h7BbPqGHB1Drg6BRz5zcS3Ma-dutDcBS2MutAQw6PDUU6DF0DsuauUxf9G8IwM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889885752</pqid></control><display><type>article</type><title>Efficient global crystal structure prediction using polynomial machine learning potential in the binary Al–Cu alloy system</title><source>J-STAGE Free</source><creator>Wakai, Hayato ; Seko, Atsuto ; Tanaka, Isao</creator><creatorcontrib>Wakai, Hayato ; Seko, Atsuto ; Tanaka, Isao</creatorcontrib><description>Machine learning potentials (MLPs) are attracting much attention as powerful tools to accurately and efficiently perform atomistic simulations and crystal structure predictions. In this study, we develop a polynomial MLP for the Al–Cu system applicable to the robust global structure search and metastable structure enumeration. We then apply a combination of a global optimization method and the polynomial MLP to the Al–Cu alloy system. As a result of approximately 1010 times energy computations, the globally-stable and metastable structures are enumerated in the Al–Cu system.</description><identifier>ISSN: 1882-0743</identifier><identifier>EISSN: 1348-6535</identifier><identifier>DOI: 10.2109/jcersj2.23053</identifier><language>eng ; jpn</language><publisher>Tokyo: The Ceramic Society of Japan</publisher><subject>Alloy system ; Alloy systems ; Aluminum base alloys ; Binary alloys ; Crystal structure ; Crystal structure prediction ; Density functional theory (DFT) calculation ; Enumeration ; Global optimization ; Machine learning ; Machine learning potentials ; Polynomials</subject><ispartof>Journal of the Ceramic Society of Japan, 2023/10/01, Vol.131(10), pp.762-766</ispartof><rights>2023 The Ceramic Society of Japan</rights><rights>2023. This work is published under https://creativecommons.org/licenses/by/4.0/deed.ja (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2913-f669a7d1dccb58d86c18dd6ca8d7719d666d98b969e9170cad4abc444243126a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,27901,27902</link.rule.ids></links><search><creatorcontrib>Wakai, Hayato</creatorcontrib><creatorcontrib>Seko, Atsuto</creatorcontrib><creatorcontrib>Tanaka, Isao</creatorcontrib><title>Efficient global crystal structure prediction using polynomial machine learning potential in the binary Al–Cu alloy system</title><title>Journal of the Ceramic Society of Japan</title><addtitle>J. Ceram. Soc. Japan</addtitle><description>Machine learning potentials (MLPs) are attracting much attention as powerful tools to accurately and efficiently perform atomistic simulations and crystal structure predictions. In this study, we develop a polynomial MLP for the Al–Cu system applicable to the robust global structure search and metastable structure enumeration. We then apply a combination of a global optimization method and the polynomial MLP to the Al–Cu alloy system. As a result of approximately 1010 times energy computations, the globally-stable and metastable structures are enumerated in the Al–Cu system.</description><subject>Alloy system</subject><subject>Alloy systems</subject><subject>Aluminum base alloys</subject><subject>Binary alloys</subject><subject>Crystal structure</subject><subject>Crystal structure prediction</subject><subject>Density functional theory (DFT) calculation</subject><subject>Enumeration</subject><subject>Global optimization</subject><subject>Machine learning</subject><subject>Machine learning potentials</subject><subject>Polynomials</subject><issn>1882-0743</issn><issn>1348-6535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kLFOwzAQhiMEEqUwsltiTontxLHHqmoBqRILzJFjO60j1wm2M0Ri4B14Q54Et6k6_Sfdd__d_UnyCLMFghl7boVyvkULhLMCXyUziHOakgIX17GmFKVZmePb5M77NssIyjGdJd_rptFCKxvAznQ1N0C40YeoPrhBhMEp0DsltQi6s2Dw2u5A35nRdgcdqQMXe20VMIo7O_VCNDu2tAVhr0CtLXcjWJq_n9_VALgx3Qh83KEO98lNw41XD2edJ5-b9cfqNd2-v7ytlttUIAZx2hDCeCmhFKIuqKREQColEZzKsoRMEkIkozUjTDFYZoLLnNciz_P4IkSE43nyNPn2rvsalA9V2w3OxpUVopRRWpQFilQ6UcJ13jvVVL3Th3h7BbPqGHB1Drg6BRz5zcS3Ma-dutDcBS2MutAQw6PDUU6DF0DsuauUxf9G8IwM</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Wakai, Hayato</creator><creator>Seko, Atsuto</creator><creator>Tanaka, Isao</creator><general>The Ceramic Society of Japan</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20231001</creationdate><title>Efficient global crystal structure prediction using polynomial machine learning potential in the binary Al–Cu alloy system</title><author>Wakai, Hayato ; Seko, Atsuto ; Tanaka, Isao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2913-f669a7d1dccb58d86c18dd6ca8d7719d666d98b969e9170cad4abc444243126a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2023</creationdate><topic>Alloy system</topic><topic>Alloy systems</topic><topic>Aluminum base alloys</topic><topic>Binary alloys</topic><topic>Crystal structure</topic><topic>Crystal structure prediction</topic><topic>Density functional theory (DFT) calculation</topic><topic>Enumeration</topic><topic>Global optimization</topic><topic>Machine learning</topic><topic>Machine learning potentials</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wakai, Hayato</creatorcontrib><creatorcontrib>Seko, Atsuto</creatorcontrib><creatorcontrib>Tanaka, Isao</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the Ceramic Society of Japan</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wakai, Hayato</au><au>Seko, Atsuto</au><au>Tanaka, Isao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient global crystal structure prediction using polynomial machine learning potential in the binary Al–Cu alloy system</atitle><jtitle>Journal of the Ceramic Society of Japan</jtitle><addtitle>J. Ceram. Soc. Japan</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>131</volume><issue>10</issue><spage>762</spage><epage>766</epage><pages>762-766</pages><artnum>23053</artnum><issn>1882-0743</issn><eissn>1348-6535</eissn><abstract>Machine learning potentials (MLPs) are attracting much attention as powerful tools to accurately and efficiently perform atomistic simulations and crystal structure predictions. In this study, we develop a polynomial MLP for the Al–Cu system applicable to the robust global structure search and metastable structure enumeration. We then apply a combination of a global optimization method and the polynomial MLP to the Al–Cu alloy system. As a result of approximately 1010 times energy computations, the globally-stable and metastable structures are enumerated in the Al–Cu system.</abstract><cop>Tokyo</cop><pub>The Ceramic Society of Japan</pub><doi>10.2109/jcersj2.23053</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1882-0743
ispartof Journal of the Ceramic Society of Japan, 2023/10/01, Vol.131(10), pp.762-766
issn 1882-0743
1348-6535
language eng ; jpn
recordid cdi_proquest_journals_2889885752
source J-STAGE Free
subjects Alloy system
Alloy systems
Aluminum base alloys
Binary alloys
Crystal structure
Crystal structure prediction
Density functional theory (DFT) calculation
Enumeration
Global optimization
Machine learning
Machine learning potentials
Polynomials
title Efficient global crystal structure prediction using polynomial machine learning potential in the binary Al–Cu alloy system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A51%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20global%20crystal%20structure%20prediction%20using%20polynomial%20machine%20learning%20potential%20in%20the%20binary%20Al%E2%80%93Cu%20alloy%20system&rft.jtitle=Journal%20of%20the%20Ceramic%20Society%20of%20Japan&rft.au=Wakai,%20Hayato&rft.date=2023-10-01&rft.volume=131&rft.issue=10&rft.spage=762&rft.epage=766&rft.pages=762-766&rft.artnum=23053&rft.issn=1882-0743&rft.eissn=1348-6535&rft_id=info:doi/10.2109/jcersj2.23053&rft_dat=%3Cproquest_cross%3E2889885752%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889885752&rft_id=info:pmid/&rfr_iscdi=true