Temperature‐Derived Fe Dissolution of a LiFePO4/Graphite Cell at Fast Charging and High State‐of‐Charge Condition
Recently, the cathode materials employed in lithium‐ion batteries are dominated by transition metal oxides, phosphates, and spinels which are known to undergo a rapid capacity fade due to the synergistic effect of transition metal dissolution and lithium plating, especially at higher operating volta...
Gespeichert in:
Veröffentlicht in: | Energy technology (Weinheim, Germany) Germany), 2023-11, Vol.11 (11) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Energy technology (Weinheim, Germany) |
container_volume | 11 |
creator | Vallabha Rao Rikka Sahu, Sumit Ranjan Gurumurthy, Mrinalini Chatterjee, Abhijit Chandran, Sudakar Sundararajan, Govindan Raghavan Gopalan Raju, Prakash |
description | Recently, the cathode materials employed in lithium‐ion batteries are dominated by transition metal oxides, phosphates, and spinels which are known to undergo a rapid capacity fade due to the synergistic effect of transition metal dissolution and lithium plating, especially at higher operating voltages and at elevated temperatures. However, solutions to mitigate these issues are unavailable largely due to the incomplete understanding of the complexity of the capacity fade mechanism at high state‐of‐charge and fast charging rates. Herein, a comprehensive experimental evidence linking to the high cell temperature as the main origin of Fe dissolution in the LiFePO4/graphite cell is provided. After 400 complete charge–discharge cycles at 4C, Fe dissolution is accelerated and is shortly followed by the deposition of Fe on graphite anode, and the subsequent formation of Fe‐catalyzed solid electrolyte interface layer at the anode. The dissolution–deposition process accounts for nearly 17–20% of the capacity loss against the initial capacity as observed in our experiments. |
doi_str_mv | 10.1002/ente.202201388 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2889868219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889868219</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-c3263ab63cb8e5faa6f6e4c2e6a1cf26fe97cc48847b4ba5a1969d9cb95b97ce3</originalsourceid><addsrcrecordid>eNo9kM1Kw0AUhQdRsNRuXQ-4Tjt_mc4sJTWtUKhgXZeb5E47JSYxmejWR_AZ-ySmKm7uuXA434FDyC1nU86YmGEVcCqYEIxLYy7ISHCrIiWsvvz_jbkmk647MsY4i2XM5Ih8bPG1wRZC3-Lp82uBrX_HgqZIF77r6rIPvq5o7SjQtU_xaaNmyxaagw9IEyxLCoGm0AWaHKDd-2pPoSroyu8P9DlAODNrN5wfe4jUVeHPyBty5aDscPKnY_KSPmyTVbTeLB-T-3XUcCNDlEuhJWRa5pnB2AFop1HlAjXw3Ant0M7zXBmj5pnKIAZutS1sntk4GxyUY3L3y23a-q3HLuyOdd9WQ-Vu2MMabYZx5DdxCGLi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889868219</pqid></control><display><type>article</type><title>Temperature‐Derived Fe Dissolution of a LiFePO4/Graphite Cell at Fast Charging and High State‐of‐Charge Condition</title><source>Access via Wiley Online Library</source><creator>Vallabha Rao Rikka ; Sahu, Sumit Ranjan ; Gurumurthy, Mrinalini ; Chatterjee, Abhijit ; Chandran, Sudakar ; Sundararajan, Govindan ; Raghavan Gopalan ; Raju, Prakash</creator><creatorcontrib>Vallabha Rao Rikka ; Sahu, Sumit Ranjan ; Gurumurthy, Mrinalini ; Chatterjee, Abhijit ; Chandran, Sudakar ; Sundararajan, Govindan ; Raghavan Gopalan ; Raju, Prakash</creatorcontrib><description>Recently, the cathode materials employed in lithium‐ion batteries are dominated by transition metal oxides, phosphates, and spinels which are known to undergo a rapid capacity fade due to the synergistic effect of transition metal dissolution and lithium plating, especially at higher operating voltages and at elevated temperatures. However, solutions to mitigate these issues are unavailable largely due to the incomplete understanding of the complexity of the capacity fade mechanism at high state‐of‐charge and fast charging rates. Herein, a comprehensive experimental evidence linking to the high cell temperature as the main origin of Fe dissolution in the LiFePO4/graphite cell is provided. After 400 complete charge–discharge cycles at 4C, Fe dissolution is accelerated and is shortly followed by the deposition of Fe on graphite anode, and the subsequent formation of Fe‐catalyzed solid electrolyte interface layer at the anode. The dissolution–deposition process accounts for nearly 17–20% of the capacity loss against the initial capacity as observed in our experiments.</description><identifier>ISSN: 2194-4288</identifier><identifier>EISSN: 2194-4296</identifier><identifier>DOI: 10.1002/ente.202201388</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anodic dissolution ; Charging ; Deposition ; Dissolution ; Electrode materials ; Graphite ; High temperature ; Lithium ; Lithium-ion batteries ; Phosphates ; Solid electrolytes ; Synergistic effect ; Transition metal oxides</subject><ispartof>Energy technology (Weinheim, Germany), 2023-11, Vol.11 (11)</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Vallabha Rao Rikka</creatorcontrib><creatorcontrib>Sahu, Sumit Ranjan</creatorcontrib><creatorcontrib>Gurumurthy, Mrinalini</creatorcontrib><creatorcontrib>Chatterjee, Abhijit</creatorcontrib><creatorcontrib>Chandran, Sudakar</creatorcontrib><creatorcontrib>Sundararajan, Govindan</creatorcontrib><creatorcontrib>Raghavan Gopalan</creatorcontrib><creatorcontrib>Raju, Prakash</creatorcontrib><title>Temperature‐Derived Fe Dissolution of a LiFePO4/Graphite Cell at Fast Charging and High State‐of‐Charge Condition</title><title>Energy technology (Weinheim, Germany)</title><description>Recently, the cathode materials employed in lithium‐ion batteries are dominated by transition metal oxides, phosphates, and spinels which are known to undergo a rapid capacity fade due to the synergistic effect of transition metal dissolution and lithium plating, especially at higher operating voltages and at elevated temperatures. However, solutions to mitigate these issues are unavailable largely due to the incomplete understanding of the complexity of the capacity fade mechanism at high state‐of‐charge and fast charging rates. Herein, a comprehensive experimental evidence linking to the high cell temperature as the main origin of Fe dissolution in the LiFePO4/graphite cell is provided. After 400 complete charge–discharge cycles at 4C, Fe dissolution is accelerated and is shortly followed by the deposition of Fe on graphite anode, and the subsequent formation of Fe‐catalyzed solid electrolyte interface layer at the anode. The dissolution–deposition process accounts for nearly 17–20% of the capacity loss against the initial capacity as observed in our experiments.</description><subject>Anodic dissolution</subject><subject>Charging</subject><subject>Deposition</subject><subject>Dissolution</subject><subject>Electrode materials</subject><subject>Graphite</subject><subject>High temperature</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Phosphates</subject><subject>Solid electrolytes</subject><subject>Synergistic effect</subject><subject>Transition metal oxides</subject><issn>2194-4288</issn><issn>2194-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Kw0AUhQdRsNRuXQ-4Tjt_mc4sJTWtUKhgXZeb5E47JSYxmejWR_AZ-ySmKm7uuXA434FDyC1nU86YmGEVcCqYEIxLYy7ISHCrIiWsvvz_jbkmk647MsY4i2XM5Ih8bPG1wRZC3-Lp82uBrX_HgqZIF77r6rIPvq5o7SjQtU_xaaNmyxaagw9IEyxLCoGm0AWaHKDd-2pPoSroyu8P9DlAODNrN5wfe4jUVeHPyBty5aDscPKnY_KSPmyTVbTeLB-T-3XUcCNDlEuhJWRa5pnB2AFop1HlAjXw3Ant0M7zXBmj5pnKIAZutS1sntk4GxyUY3L3y23a-q3HLuyOdd9WQ-Vu2MMabYZx5DdxCGLi</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Vallabha Rao Rikka</creator><creator>Sahu, Sumit Ranjan</creator><creator>Gurumurthy, Mrinalini</creator><creator>Chatterjee, Abhijit</creator><creator>Chandran, Sudakar</creator><creator>Sundararajan, Govindan</creator><creator>Raghavan Gopalan</creator><creator>Raju, Prakash</creator><general>Wiley Subscription Services, Inc</general><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20231101</creationdate><title>Temperature‐Derived Fe Dissolution of a LiFePO4/Graphite Cell at Fast Charging and High State‐of‐Charge Condition</title><author>Vallabha Rao Rikka ; Sahu, Sumit Ranjan ; Gurumurthy, Mrinalini ; Chatterjee, Abhijit ; Chandran, Sudakar ; Sundararajan, Govindan ; Raghavan Gopalan ; Raju, Prakash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-c3263ab63cb8e5faa6f6e4c2e6a1cf26fe97cc48847b4ba5a1969d9cb95b97ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anodic dissolution</topic><topic>Charging</topic><topic>Deposition</topic><topic>Dissolution</topic><topic>Electrode materials</topic><topic>Graphite</topic><topic>High temperature</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Phosphates</topic><topic>Solid electrolytes</topic><topic>Synergistic effect</topic><topic>Transition metal oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vallabha Rao Rikka</creatorcontrib><creatorcontrib>Sahu, Sumit Ranjan</creatorcontrib><creatorcontrib>Gurumurthy, Mrinalini</creatorcontrib><creatorcontrib>Chatterjee, Abhijit</creatorcontrib><creatorcontrib>Chandran, Sudakar</creatorcontrib><creatorcontrib>Sundararajan, Govindan</creatorcontrib><creatorcontrib>Raghavan Gopalan</creatorcontrib><creatorcontrib>Raju, Prakash</creatorcontrib><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy technology (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vallabha Rao Rikka</au><au>Sahu, Sumit Ranjan</au><au>Gurumurthy, Mrinalini</au><au>Chatterjee, Abhijit</au><au>Chandran, Sudakar</au><au>Sundararajan, Govindan</au><au>Raghavan Gopalan</au><au>Raju, Prakash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature‐Derived Fe Dissolution of a LiFePO4/Graphite Cell at Fast Charging and High State‐of‐Charge Condition</atitle><jtitle>Energy technology (Weinheim, Germany)</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>11</volume><issue>11</issue><issn>2194-4288</issn><eissn>2194-4296</eissn><abstract>Recently, the cathode materials employed in lithium‐ion batteries are dominated by transition metal oxides, phosphates, and spinels which are known to undergo a rapid capacity fade due to the synergistic effect of transition metal dissolution and lithium plating, especially at higher operating voltages and at elevated temperatures. However, solutions to mitigate these issues are unavailable largely due to the incomplete understanding of the complexity of the capacity fade mechanism at high state‐of‐charge and fast charging rates. Herein, a comprehensive experimental evidence linking to the high cell temperature as the main origin of Fe dissolution in the LiFePO4/graphite cell is provided. After 400 complete charge–discharge cycles at 4C, Fe dissolution is accelerated and is shortly followed by the deposition of Fe on graphite anode, and the subsequent formation of Fe‐catalyzed solid electrolyte interface layer at the anode. The dissolution–deposition process accounts for nearly 17–20% of the capacity loss against the initial capacity as observed in our experiments.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ente.202201388</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2194-4288 |
ispartof | Energy technology (Weinheim, Germany), 2023-11, Vol.11 (11) |
issn | 2194-4288 2194-4296 |
language | eng |
recordid | cdi_proquest_journals_2889868219 |
source | Access via Wiley Online Library |
subjects | Anodic dissolution Charging Deposition Dissolution Electrode materials Graphite High temperature Lithium Lithium-ion batteries Phosphates Solid electrolytes Synergistic effect Transition metal oxides |
title | Temperature‐Derived Fe Dissolution of a LiFePO4/Graphite Cell at Fast Charging and High State‐of‐Charge Condition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A19%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%E2%80%90Derived%20Fe%20Dissolution%20of%20a%20LiFePO4/Graphite%20Cell%20at%20Fast%20Charging%20and%20High%20State%E2%80%90of%E2%80%90Charge%20Condition&rft.jtitle=Energy%20technology%20(Weinheim,%20Germany)&rft.au=Vallabha%20Rao%20Rikka&rft.date=2023-11-01&rft.volume=11&rft.issue=11&rft.issn=2194-4288&rft.eissn=2194-4296&rft_id=info:doi/10.1002/ente.202201388&rft_dat=%3Cproquest%3E2889868219%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889868219&rft_id=info:pmid/&rfr_iscdi=true |