Temperature‐Derived Fe Dissolution of a LiFePO4/Graphite Cell at Fast Charging and High State‐of‐Charge Condition

Recently, the cathode materials employed in lithium‐ion batteries are dominated by transition metal oxides, phosphates, and spinels which are known to undergo a rapid capacity fade due to the synergistic effect of transition metal dissolution and lithium plating, especially at higher operating volta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy technology (Weinheim, Germany) Germany), 2023-11, Vol.11 (11)
Hauptverfasser: Vallabha Rao Rikka, Sahu, Sumit Ranjan, Gurumurthy, Mrinalini, Chatterjee, Abhijit, Chandran, Sudakar, Sundararajan, Govindan, Raghavan Gopalan, Raju, Prakash
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Energy technology (Weinheim, Germany)
container_volume 11
creator Vallabha Rao Rikka
Sahu, Sumit Ranjan
Gurumurthy, Mrinalini
Chatterjee, Abhijit
Chandran, Sudakar
Sundararajan, Govindan
Raghavan Gopalan
Raju, Prakash
description Recently, the cathode materials employed in lithium‐ion batteries are dominated by transition metal oxides, phosphates, and spinels which are known to undergo a rapid capacity fade due to the synergistic effect of transition metal dissolution and lithium plating, especially at higher operating voltages and at elevated temperatures. However, solutions to mitigate these issues are unavailable largely due to the incomplete understanding of the complexity of the capacity fade mechanism at high state‐of‐charge and fast charging rates. Herein, a comprehensive experimental evidence linking to the high cell temperature as the main origin of Fe dissolution in the LiFePO4/graphite cell is provided. After 400 complete charge–discharge cycles at 4C, Fe dissolution is accelerated and is shortly followed by the deposition of Fe on graphite anode, and the subsequent formation of Fe‐catalyzed solid electrolyte interface layer at the anode. The dissolution–deposition process accounts for nearly 17–20% of the capacity loss against the initial capacity as observed in our experiments.
doi_str_mv 10.1002/ente.202201388
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2889868219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889868219</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-c3263ab63cb8e5faa6f6e4c2e6a1cf26fe97cc48847b4ba5a1969d9cb95b97ce3</originalsourceid><addsrcrecordid>eNo9kM1Kw0AUhQdRsNRuXQ-4Tjt_mc4sJTWtUKhgXZeb5E47JSYxmejWR_AZ-ySmKm7uuXA434FDyC1nU86YmGEVcCqYEIxLYy7ISHCrIiWsvvz_jbkmk647MsY4i2XM5Ih8bPG1wRZC3-Lp82uBrX_HgqZIF77r6rIPvq5o7SjQtU_xaaNmyxaagw9IEyxLCoGm0AWaHKDd-2pPoSroyu8P9DlAODNrN5wfe4jUVeHPyBty5aDscPKnY_KSPmyTVbTeLB-T-3XUcCNDlEuhJWRa5pnB2AFop1HlAjXw3Ant0M7zXBmj5pnKIAZutS1sntk4GxyUY3L3y23a-q3HLuyOdd9WQ-Vu2MMabYZx5DdxCGLi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889868219</pqid></control><display><type>article</type><title>Temperature‐Derived Fe Dissolution of a LiFePO4/Graphite Cell at Fast Charging and High State‐of‐Charge Condition</title><source>Access via Wiley Online Library</source><creator>Vallabha Rao Rikka ; Sahu, Sumit Ranjan ; Gurumurthy, Mrinalini ; Chatterjee, Abhijit ; Chandran, Sudakar ; Sundararajan, Govindan ; Raghavan Gopalan ; Raju, Prakash</creator><creatorcontrib>Vallabha Rao Rikka ; Sahu, Sumit Ranjan ; Gurumurthy, Mrinalini ; Chatterjee, Abhijit ; Chandran, Sudakar ; Sundararajan, Govindan ; Raghavan Gopalan ; Raju, Prakash</creatorcontrib><description>Recently, the cathode materials employed in lithium‐ion batteries are dominated by transition metal oxides, phosphates, and spinels which are known to undergo a rapid capacity fade due to the synergistic effect of transition metal dissolution and lithium plating, especially at higher operating voltages and at elevated temperatures. However, solutions to mitigate these issues are unavailable largely due to the incomplete understanding of the complexity of the capacity fade mechanism at high state‐of‐charge and fast charging rates. Herein, a comprehensive experimental evidence linking to the high cell temperature as the main origin of Fe dissolution in the LiFePO4/graphite cell is provided. After 400 complete charge–discharge cycles at 4C, Fe dissolution is accelerated and is shortly followed by the deposition of Fe on graphite anode, and the subsequent formation of Fe‐catalyzed solid electrolyte interface layer at the anode. The dissolution–deposition process accounts for nearly 17–20% of the capacity loss against the initial capacity as observed in our experiments.</description><identifier>ISSN: 2194-4288</identifier><identifier>EISSN: 2194-4296</identifier><identifier>DOI: 10.1002/ente.202201388</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anodic dissolution ; Charging ; Deposition ; Dissolution ; Electrode materials ; Graphite ; High temperature ; Lithium ; Lithium-ion batteries ; Phosphates ; Solid electrolytes ; Synergistic effect ; Transition metal oxides</subject><ispartof>Energy technology (Weinheim, Germany), 2023-11, Vol.11 (11)</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Vallabha Rao Rikka</creatorcontrib><creatorcontrib>Sahu, Sumit Ranjan</creatorcontrib><creatorcontrib>Gurumurthy, Mrinalini</creatorcontrib><creatorcontrib>Chatterjee, Abhijit</creatorcontrib><creatorcontrib>Chandran, Sudakar</creatorcontrib><creatorcontrib>Sundararajan, Govindan</creatorcontrib><creatorcontrib>Raghavan Gopalan</creatorcontrib><creatorcontrib>Raju, Prakash</creatorcontrib><title>Temperature‐Derived Fe Dissolution of a LiFePO4/Graphite Cell at Fast Charging and High State‐of‐Charge Condition</title><title>Energy technology (Weinheim, Germany)</title><description>Recently, the cathode materials employed in lithium‐ion batteries are dominated by transition metal oxides, phosphates, and spinels which are known to undergo a rapid capacity fade due to the synergistic effect of transition metal dissolution and lithium plating, especially at higher operating voltages and at elevated temperatures. However, solutions to mitigate these issues are unavailable largely due to the incomplete understanding of the complexity of the capacity fade mechanism at high state‐of‐charge and fast charging rates. Herein, a comprehensive experimental evidence linking to the high cell temperature as the main origin of Fe dissolution in the LiFePO4/graphite cell is provided. After 400 complete charge–discharge cycles at 4C, Fe dissolution is accelerated and is shortly followed by the deposition of Fe on graphite anode, and the subsequent formation of Fe‐catalyzed solid electrolyte interface layer at the anode. The dissolution–deposition process accounts for nearly 17–20% of the capacity loss against the initial capacity as observed in our experiments.</description><subject>Anodic dissolution</subject><subject>Charging</subject><subject>Deposition</subject><subject>Dissolution</subject><subject>Electrode materials</subject><subject>Graphite</subject><subject>High temperature</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Phosphates</subject><subject>Solid electrolytes</subject><subject>Synergistic effect</subject><subject>Transition metal oxides</subject><issn>2194-4288</issn><issn>2194-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Kw0AUhQdRsNRuXQ-4Tjt_mc4sJTWtUKhgXZeb5E47JSYxmejWR_AZ-ySmKm7uuXA434FDyC1nU86YmGEVcCqYEIxLYy7ISHCrIiWsvvz_jbkmk647MsY4i2XM5Ih8bPG1wRZC3-Lp82uBrX_HgqZIF77r6rIPvq5o7SjQtU_xaaNmyxaagw9IEyxLCoGm0AWaHKDd-2pPoSroyu8P9DlAODNrN5wfe4jUVeHPyBty5aDscPKnY_KSPmyTVbTeLB-T-3XUcCNDlEuhJWRa5pnB2AFop1HlAjXw3Ant0M7zXBmj5pnKIAZutS1sntk4GxyUY3L3y23a-q3HLuyOdd9WQ-Vu2MMabYZx5DdxCGLi</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Vallabha Rao Rikka</creator><creator>Sahu, Sumit Ranjan</creator><creator>Gurumurthy, Mrinalini</creator><creator>Chatterjee, Abhijit</creator><creator>Chandran, Sudakar</creator><creator>Sundararajan, Govindan</creator><creator>Raghavan Gopalan</creator><creator>Raju, Prakash</creator><general>Wiley Subscription Services, Inc</general><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20231101</creationdate><title>Temperature‐Derived Fe Dissolution of a LiFePO4/Graphite Cell at Fast Charging and High State‐of‐Charge Condition</title><author>Vallabha Rao Rikka ; Sahu, Sumit Ranjan ; Gurumurthy, Mrinalini ; Chatterjee, Abhijit ; Chandran, Sudakar ; Sundararajan, Govindan ; Raghavan Gopalan ; Raju, Prakash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-c3263ab63cb8e5faa6f6e4c2e6a1cf26fe97cc48847b4ba5a1969d9cb95b97ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anodic dissolution</topic><topic>Charging</topic><topic>Deposition</topic><topic>Dissolution</topic><topic>Electrode materials</topic><topic>Graphite</topic><topic>High temperature</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Phosphates</topic><topic>Solid electrolytes</topic><topic>Synergistic effect</topic><topic>Transition metal oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vallabha Rao Rikka</creatorcontrib><creatorcontrib>Sahu, Sumit Ranjan</creatorcontrib><creatorcontrib>Gurumurthy, Mrinalini</creatorcontrib><creatorcontrib>Chatterjee, Abhijit</creatorcontrib><creatorcontrib>Chandran, Sudakar</creatorcontrib><creatorcontrib>Sundararajan, Govindan</creatorcontrib><creatorcontrib>Raghavan Gopalan</creatorcontrib><creatorcontrib>Raju, Prakash</creatorcontrib><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy technology (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vallabha Rao Rikka</au><au>Sahu, Sumit Ranjan</au><au>Gurumurthy, Mrinalini</au><au>Chatterjee, Abhijit</au><au>Chandran, Sudakar</au><au>Sundararajan, Govindan</au><au>Raghavan Gopalan</au><au>Raju, Prakash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature‐Derived Fe Dissolution of a LiFePO4/Graphite Cell at Fast Charging and High State‐of‐Charge Condition</atitle><jtitle>Energy technology (Weinheim, Germany)</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>11</volume><issue>11</issue><issn>2194-4288</issn><eissn>2194-4296</eissn><abstract>Recently, the cathode materials employed in lithium‐ion batteries are dominated by transition metal oxides, phosphates, and spinels which are known to undergo a rapid capacity fade due to the synergistic effect of transition metal dissolution and lithium plating, especially at higher operating voltages and at elevated temperatures. However, solutions to mitigate these issues are unavailable largely due to the incomplete understanding of the complexity of the capacity fade mechanism at high state‐of‐charge and fast charging rates. Herein, a comprehensive experimental evidence linking to the high cell temperature as the main origin of Fe dissolution in the LiFePO4/graphite cell is provided. After 400 complete charge–discharge cycles at 4C, Fe dissolution is accelerated and is shortly followed by the deposition of Fe on graphite anode, and the subsequent formation of Fe‐catalyzed solid electrolyte interface layer at the anode. The dissolution–deposition process accounts for nearly 17–20% of the capacity loss against the initial capacity as observed in our experiments.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ente.202201388</doi></addata></record>
fulltext fulltext
identifier ISSN: 2194-4288
ispartof Energy technology (Weinheim, Germany), 2023-11, Vol.11 (11)
issn 2194-4288
2194-4296
language eng
recordid cdi_proquest_journals_2889868219
source Access via Wiley Online Library
subjects Anodic dissolution
Charging
Deposition
Dissolution
Electrode materials
Graphite
High temperature
Lithium
Lithium-ion batteries
Phosphates
Solid electrolytes
Synergistic effect
Transition metal oxides
title Temperature‐Derived Fe Dissolution of a LiFePO4/Graphite Cell at Fast Charging and High State‐of‐Charge Condition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A19%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%E2%80%90Derived%20Fe%20Dissolution%20of%20a%20LiFePO4/Graphite%20Cell%20at%20Fast%20Charging%20and%20High%20State%E2%80%90of%E2%80%90Charge%20Condition&rft.jtitle=Energy%20technology%20(Weinheim,%20Germany)&rft.au=Vallabha%20Rao%20Rikka&rft.date=2023-11-01&rft.volume=11&rft.issue=11&rft.issn=2194-4288&rft.eissn=2194-4296&rft_id=info:doi/10.1002/ente.202201388&rft_dat=%3Cproquest%3E2889868219%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889868219&rft_id=info:pmid/&rfr_iscdi=true