Context-Aware Stock Recommendations with Stocks' Characteristics and Investors' Traits
Personalized stock recommendations aim to suggest stocks tailored to individual investor needs, significantly aiding the financial decision making of an investor. This study shows the advantages of incorporating context into personalized stock recommendation systems. We embed item contextual informa...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2023/10/01, Vol.E106.D(10), pp.1732-1741 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1741 |
---|---|
container_issue | 10 |
container_start_page | 1732 |
container_title | IEICE Transactions on Information and Systems |
container_volume | E106.D |
creator | TAKAYANAGI, Takehiro IZUMI, Kiyoshi |
description | Personalized stock recommendations aim to suggest stocks tailored to individual investor needs, significantly aiding the financial decision making of an investor. This study shows the advantages of incorporating context into personalized stock recommendation systems. We embed item contextual information such as technical indicators, fundamental factors, and business activities of individual stocks. Simultaneously, we consider user contextual information such as investors' personality traits, behavioral characteristics, and attributes to create a comprehensive investor profile. Our model incorporating contextual information, validated on novel stock recommendation tasks, demonstrated a notable improvement over baseline models when incorporating these contextual features. Consistent outperformance across various hyperparameters further underscores the robustness and utility of our model in integrating stocks' features and investors' traits into personalized stock recommendations. |
doi_str_mv | 10.1587/transinf.2023EDP7017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2889858883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889858883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-918a81a746f2609742739983fef2f767b3259561314e3b99018d0a365f13d4933</originalsourceid><addsrcrecordid>eNpNUMtOAjEUbYwmIvoHLiZx4Wqwj5k-lmRAJSHRCLptykwrg9BiW0T_3iGDyOre5DzuuQeAawR7KOfsLnplQ21ND0NMhoNnBhE7AR3EsjxFhKJT0IEC0ZTnBJ-DixAWECKOUd4Bb4WzUX_HtL9VXieT6MqP5EWXbrXStlKxdjYk2zrOWyjcJsVceVVG7esQ6zIkylbJyH7pEJ1v4KlXdQyX4MyoZdBX-9kFr_fDafGYjp8eRkV_nJYZZTEViCuOFMuowRQKlmFGhODEaIMNo2xGcC5yigjKNJkJ0aSuoCI0N4hUmSCkC25a37V3n5smg1y4jbfNSYk5FzznnO9YWcsqvQvBayPXvl4p_yMRlLsG5V-D8qjBRjZpZYsQ1bs-iJRvHl_qf9EQQSoHO7P9duRyYJdNb1Jb8gvLJIKq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889858883</pqid></control><display><type>article</type><title>Context-Aware Stock Recommendations with Stocks' Characteristics and Investors' Traits</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>TAKAYANAGI, Takehiro ; IZUMI, Kiyoshi</creator><creatorcontrib>TAKAYANAGI, Takehiro ; IZUMI, Kiyoshi</creatorcontrib><description>Personalized stock recommendations aim to suggest stocks tailored to individual investor needs, significantly aiding the financial decision making of an investor. This study shows the advantages of incorporating context into personalized stock recommendation systems. We embed item contextual information such as technical indicators, fundamental factors, and business activities of individual stocks. Simultaneously, we consider user contextual information such as investors' personality traits, behavioral characteristics, and attributes to create a comprehensive investor profile. Our model incorporating contextual information, validated on novel stock recommendation tasks, demonstrated a notable improvement over baseline models when incorporating these contextual features. Consistent outperformance across various hyperparameters further underscores the robustness and utility of our model in integrating stocks' features and investors' traits into personalized stock recommendations.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2023EDP7017</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>behavioral economics ; Context ; Customization ; graph neural network ; investor modeling ; natural language processing ; recommendation ; Recommender systems ; stock recommendation</subject><ispartof>IEICE Transactions on Information and Systems, 2023/10/01, Vol.E106.D(10), pp.1732-1741</ispartof><rights>2023 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-918a81a746f2609742739983fef2f767b3259561314e3b99018d0a365f13d4933</citedby><cites>FETCH-LOGICAL-c467t-918a81a746f2609742739983fef2f767b3259561314e3b99018d0a365f13d4933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,27901,27902</link.rule.ids></links><search><creatorcontrib>TAKAYANAGI, Takehiro</creatorcontrib><creatorcontrib>IZUMI, Kiyoshi</creatorcontrib><title>Context-Aware Stock Recommendations with Stocks' Characteristics and Investors' Traits</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. & Syst.</addtitle><description>Personalized stock recommendations aim to suggest stocks tailored to individual investor needs, significantly aiding the financial decision making of an investor. This study shows the advantages of incorporating context into personalized stock recommendation systems. We embed item contextual information such as technical indicators, fundamental factors, and business activities of individual stocks. Simultaneously, we consider user contextual information such as investors' personality traits, behavioral characteristics, and attributes to create a comprehensive investor profile. Our model incorporating contextual information, validated on novel stock recommendation tasks, demonstrated a notable improvement over baseline models when incorporating these contextual features. Consistent outperformance across various hyperparameters further underscores the robustness and utility of our model in integrating stocks' features and investors' traits into personalized stock recommendations.</description><subject>behavioral economics</subject><subject>Context</subject><subject>Customization</subject><subject>graph neural network</subject><subject>investor modeling</subject><subject>natural language processing</subject><subject>recommendation</subject><subject>Recommender systems</subject><subject>stock recommendation</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNUMtOAjEUbYwmIvoHLiZx4Wqwj5k-lmRAJSHRCLptykwrg9BiW0T_3iGDyOre5DzuuQeAawR7KOfsLnplQ21ND0NMhoNnBhE7AR3EsjxFhKJT0IEC0ZTnBJ-DixAWECKOUd4Bb4WzUX_HtL9VXieT6MqP5EWXbrXStlKxdjYk2zrOWyjcJsVceVVG7esQ6zIkylbJyH7pEJ1v4KlXdQyX4MyoZdBX-9kFr_fDafGYjp8eRkV_nJYZZTEViCuOFMuowRQKlmFGhODEaIMNo2xGcC5yigjKNJkJ0aSuoCI0N4hUmSCkC25a37V3n5smg1y4jbfNSYk5FzznnO9YWcsqvQvBayPXvl4p_yMRlLsG5V-D8qjBRjZpZYsQ1bs-iJRvHl_qf9EQQSoHO7P9duRyYJdNb1Jb8gvLJIKq</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>TAKAYANAGI, Takehiro</creator><creator>IZUMI, Kiyoshi</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20231001</creationdate><title>Context-Aware Stock Recommendations with Stocks' Characteristics and Investors' Traits</title><author>TAKAYANAGI, Takehiro ; IZUMI, Kiyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-918a81a746f2609742739983fef2f767b3259561314e3b99018d0a365f13d4933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>behavioral economics</topic><topic>Context</topic><topic>Customization</topic><topic>graph neural network</topic><topic>investor modeling</topic><topic>natural language processing</topic><topic>recommendation</topic><topic>Recommender systems</topic><topic>stock recommendation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TAKAYANAGI, Takehiro</creatorcontrib><creatorcontrib>IZUMI, Kiyoshi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TAKAYANAGI, Takehiro</au><au>IZUMI, Kiyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Context-Aware Stock Recommendations with Stocks' Characteristics and Investors' Traits</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. & Syst.</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>E106.D</volume><issue>10</issue><spage>1732</spage><epage>1741</epage><pages>1732-1741</pages><artnum>2023EDP7017</artnum><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>Personalized stock recommendations aim to suggest stocks tailored to individual investor needs, significantly aiding the financial decision making of an investor. This study shows the advantages of incorporating context into personalized stock recommendation systems. We embed item contextual information such as technical indicators, fundamental factors, and business activities of individual stocks. Simultaneously, we consider user contextual information such as investors' personality traits, behavioral characteristics, and attributes to create a comprehensive investor profile. Our model incorporating contextual information, validated on novel stock recommendation tasks, demonstrated a notable improvement over baseline models when incorporating these contextual features. Consistent outperformance across various hyperparameters further underscores the robustness and utility of our model in integrating stocks' features and investors' traits into personalized stock recommendations.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2023EDP7017</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8532 |
ispartof | IEICE Transactions on Information and Systems, 2023/10/01, Vol.E106.D(10), pp.1732-1741 |
issn | 0916-8532 1745-1361 |
language | eng |
recordid | cdi_proquest_journals_2889858883 |
source | J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | behavioral economics Context Customization graph neural network investor modeling natural language processing recommendation Recommender systems stock recommendation |
title | Context-Aware Stock Recommendations with Stocks' Characteristics and Investors' Traits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T23%3A14%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Context-Aware%20Stock%20Recommendations%20with%20Stocks'%20Characteristics%20and%20Investors'%20Traits&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=TAKAYANAGI,%20Takehiro&rft.date=2023-10-01&rft.volume=E106.D&rft.issue=10&rft.spage=1732&rft.epage=1741&rft.pages=1732-1741&rft.artnum=2023EDP7017&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2023EDP7017&rft_dat=%3Cproquest_cross%3E2889858883%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889858883&rft_id=info:pmid/&rfr_iscdi=true |