Fusion-equivariant stability conditions and Morita duality

Given a triangulated category \(D\) with an action of a fusion category \(C\), we study the moduli space \(Stab_{C}(D)\) of fusion-equivariant Bridgeland stability conditions on \(D\). The main theorem is that the fusion-equivariant stability conditions form a closed, complex submanifold of the modu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Dell, Hannah, Heng, Edmund, Licata, Anthony M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Dell, Hannah
Heng, Edmund
Licata, Anthony M
description Given a triangulated category \(D\) with an action of a fusion category \(C\), we study the moduli space \(Stab_{C}(D)\) of fusion-equivariant Bridgeland stability conditions on \(D\). The main theorem is that the fusion-equivariant stability conditions form a closed, complex submanifold of the moduli space of stability conditions on \(D\). As an application of this framework, we generalise a result of Macr\`{i}--Mehrotra--Stellari by establishing a homeomorphism between the space of \(G\)-invariant stability conditions on \(D\) and the space of \(rep(G)\)-equivariant stability conditions on the equivariant category \(D^G\). We also describe applications to the study of stability conditions associated to McKay quivers and to geometric stability conditions on free quotients of smooth projective varieties.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2889797498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889797498</sourcerecordid><originalsourceid>FETCH-proquest_journals_28897974983</originalsourceid><addsrcrecordid>eNqNyrEKwjAUQNEgCBbtPwScAzFpbeoqFhc39_I0EV4pic1LBP_eCn6A0x3OXbBCab0TplJqxUqiQUqp9o2qa12wQ5cJgxduyviCiOATpwQ3HDG9-T14i2l24uAtv4SICbjN8NUNWz5gJFf-umbb7nQ9nsUzhik7Sv0QcvQz9cqYtmmbqjX6v-sDMIA34Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889797498</pqid></control><display><type>article</type><title>Fusion-equivariant stability conditions and Morita duality</title><source>Free E- Journals</source><creator>Dell, Hannah ; Heng, Edmund ; Licata, Anthony M</creator><creatorcontrib>Dell, Hannah ; Heng, Edmund ; Licata, Anthony M</creatorcontrib><description>Given a triangulated category \(D\) with an action of a fusion category \(C\), we study the moduli space \(Stab_{C}(D)\) of fusion-equivariant Bridgeland stability conditions on \(D\). The main theorem is that the fusion-equivariant stability conditions form a closed, complex submanifold of the moduli space of stability conditions on \(D\). As an application of this framework, we generalise a result of Macr\`{i}--Mehrotra--Stellari by establishing a homeomorphism between the space of \(G\)-invariant stability conditions on \(D\) and the space of \(rep(G)\)-equivariant stability conditions on the equivariant category \(D^G\). We also describe applications to the study of stability conditions associated to McKay quivers and to geometric stability conditions on free quotients of smooth projective varieties.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Manifolds (mathematics) ; Stability ; Topology</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Dell, Hannah</creatorcontrib><creatorcontrib>Heng, Edmund</creatorcontrib><creatorcontrib>Licata, Anthony M</creatorcontrib><title>Fusion-equivariant stability conditions and Morita duality</title><title>arXiv.org</title><description>Given a triangulated category \(D\) with an action of a fusion category \(C\), we study the moduli space \(Stab_{C}(D)\) of fusion-equivariant Bridgeland stability conditions on \(D\). The main theorem is that the fusion-equivariant stability conditions form a closed, complex submanifold of the moduli space of stability conditions on \(D\). As an application of this framework, we generalise a result of Macr\`{i}--Mehrotra--Stellari by establishing a homeomorphism between the space of \(G\)-invariant stability conditions on \(D\) and the space of \(rep(G)\)-equivariant stability conditions on the equivariant category \(D^G\). We also describe applications to the study of stability conditions associated to McKay quivers and to geometric stability conditions on free quotients of smooth projective varieties.</description><subject>Manifolds (mathematics)</subject><subject>Stability</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEKwjAUQNEgCBbtPwScAzFpbeoqFhc39_I0EV4pic1LBP_eCn6A0x3OXbBCab0TplJqxUqiQUqp9o2qa12wQ5cJgxduyviCiOATpwQ3HDG9-T14i2l24uAtv4SICbjN8NUNWz5gJFf-umbb7nQ9nsUzhik7Sv0QcvQz9cqYtmmbqjX6v-sDMIA34Q</recordid><startdate>20240322</startdate><enddate>20240322</enddate><creator>Dell, Hannah</creator><creator>Heng, Edmund</creator><creator>Licata, Anthony M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240322</creationdate><title>Fusion-equivariant stability conditions and Morita duality</title><author>Dell, Hannah ; Heng, Edmund ; Licata, Anthony M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28897974983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Manifolds (mathematics)</topic><topic>Stability</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Dell, Hannah</creatorcontrib><creatorcontrib>Heng, Edmund</creatorcontrib><creatorcontrib>Licata, Anthony M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dell, Hannah</au><au>Heng, Edmund</au><au>Licata, Anthony M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Fusion-equivariant stability conditions and Morita duality</atitle><jtitle>arXiv.org</jtitle><date>2024-03-22</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Given a triangulated category \(D\) with an action of a fusion category \(C\), we study the moduli space \(Stab_{C}(D)\) of fusion-equivariant Bridgeland stability conditions on \(D\). The main theorem is that the fusion-equivariant stability conditions form a closed, complex submanifold of the moduli space of stability conditions on \(D\). As an application of this framework, we generalise a result of Macr\`{i}--Mehrotra--Stellari by establishing a homeomorphism between the space of \(G\)-invariant stability conditions on \(D\) and the space of \(rep(G)\)-equivariant stability conditions on the equivariant category \(D^G\). We also describe applications to the study of stability conditions associated to McKay quivers and to geometric stability conditions on free quotients of smooth projective varieties.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2889797498
source Free E- Journals
subjects Manifolds (mathematics)
Stability
Topology
title Fusion-equivariant stability conditions and Morita duality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A05%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Fusion-equivariant%20stability%20conditions%20and%20Morita%20duality&rft.jtitle=arXiv.org&rft.au=Dell,%20Hannah&rft.date=2024-03-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2889797498%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889797498&rft_id=info:pmid/&rfr_iscdi=true