Temporal Performance Prediction for Deep Convolutional Long Short-Term Memory Networks

Quantifying predictive uncertainty of deep semantic segmentation networks is essential in safety-critical tasks. In applications like autonomous driving, where video data is available, convolutional long short-term memory networks are capable of not only providing semantic segmentations but also pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-11
Hauptverfasser: Fieback, Laura, Dash, Bidya, Spiegelberg, Jakob, Gottschalk, Hanno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Fieback, Laura
Dash, Bidya
Spiegelberg, Jakob
Gottschalk, Hanno
description Quantifying predictive uncertainty of deep semantic segmentation networks is essential in safety-critical tasks. In applications like autonomous driving, where video data is available, convolutional long short-term memory networks are capable of not only providing semantic segmentations but also predicting the segmentations of the next timesteps. These models use cell states to broadcast information from previous data by taking a time series of inputs to predict one or even further steps into the future. We present a temporal postprocessing method which estimates the prediction performance of convolutional long short-term memory networks by either predicting the intersection over union of predicted and ground truth segments or classifying between intersection over union being equal to zero or greater than zero. To this end, we create temporal cell state-based input metrics per segment and investigate different models for the estimation of the predictive quality based on these metrics. We further study the influence of the number of considered cell states for the proposed metrics.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2889794636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889794636</sourcerecordid><originalsourceid>FETCH-proquest_journals_28897946363</originalsourceid><addsrcrecordid>eNqNjMsKgkAUQIcgSMp_GGgt2IzPtRUtKoSkrYhdS3O8dmcs-vsM-oBWBw6HM2GWkHLlRJ4QM2Zr3biuK4JQ-L602DkD1SMVLU-BKiRVdCXwlOBSl6bGjo-OrwF6nmD3xHb4yrHeY3flpxuScTIgxQ-gkN78COaFdNcLNq2KVoP945wtt5ss2Tk94WMAbfIGBxpHOhdRFIexF8hA_ld9ADyZQas</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889794636</pqid></control><display><type>article</type><title>Temporal Performance Prediction for Deep Convolutional Long Short-Term Memory Networks</title><source>Free E- Journals</source><creator>Fieback, Laura ; Dash, Bidya ; Spiegelberg, Jakob ; Gottschalk, Hanno</creator><creatorcontrib>Fieback, Laura ; Dash, Bidya ; Spiegelberg, Jakob ; Gottschalk, Hanno</creatorcontrib><description>Quantifying predictive uncertainty of deep semantic segmentation networks is essential in safety-critical tasks. In applications like autonomous driving, where video data is available, convolutional long short-term memory networks are capable of not only providing semantic segmentations but also predicting the segmentations of the next timesteps. These models use cell states to broadcast information from previous data by taking a time series of inputs to predict one or even further steps into the future. We present a temporal postprocessing method which estimates the prediction performance of convolutional long short-term memory networks by either predicting the intersection over union of predicted and ground truth segments or classifying between intersection over union being equal to zero or greater than zero. To this end, we create temporal cell state-based input metrics per segment and investigate different models for the estimation of the predictive quality based on these metrics. We further study the influence of the number of considered cell states for the proposed metrics.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Networks ; Performance prediction ; Safety critical ; Segments ; Semantic segmentation ; Semantics ; Video data</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Fieback, Laura</creatorcontrib><creatorcontrib>Dash, Bidya</creatorcontrib><creatorcontrib>Spiegelberg, Jakob</creatorcontrib><creatorcontrib>Gottschalk, Hanno</creatorcontrib><title>Temporal Performance Prediction for Deep Convolutional Long Short-Term Memory Networks</title><title>arXiv.org</title><description>Quantifying predictive uncertainty of deep semantic segmentation networks is essential in safety-critical tasks. In applications like autonomous driving, where video data is available, convolutional long short-term memory networks are capable of not only providing semantic segmentations but also predicting the segmentations of the next timesteps. These models use cell states to broadcast information from previous data by taking a time series of inputs to predict one or even further steps into the future. We present a temporal postprocessing method which estimates the prediction performance of convolutional long short-term memory networks by either predicting the intersection over union of predicted and ground truth segments or classifying between intersection over union being equal to zero or greater than zero. To this end, we create temporal cell state-based input metrics per segment and investigate different models for the estimation of the predictive quality based on these metrics. We further study the influence of the number of considered cell states for the proposed metrics.</description><subject>Networks</subject><subject>Performance prediction</subject><subject>Safety critical</subject><subject>Segments</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Video data</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMsKgkAUQIcgSMp_GGgt2IzPtRUtKoSkrYhdS3O8dmcs-vsM-oBWBw6HM2GWkHLlRJ4QM2Zr3biuK4JQ-L602DkD1SMVLU-BKiRVdCXwlOBSl6bGjo-OrwF6nmD3xHb4yrHeY3flpxuScTIgxQ-gkN78COaFdNcLNq2KVoP945wtt5ss2Tk94WMAbfIGBxpHOhdRFIexF8hA_ld9ADyZQas</recordid><startdate>20231113</startdate><enddate>20231113</enddate><creator>Fieback, Laura</creator><creator>Dash, Bidya</creator><creator>Spiegelberg, Jakob</creator><creator>Gottschalk, Hanno</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231113</creationdate><title>Temporal Performance Prediction for Deep Convolutional Long Short-Term Memory Networks</title><author>Fieback, Laura ; Dash, Bidya ; Spiegelberg, Jakob ; Gottschalk, Hanno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28897946363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Networks</topic><topic>Performance prediction</topic><topic>Safety critical</topic><topic>Segments</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Video data</topic><toplevel>online_resources</toplevel><creatorcontrib>Fieback, Laura</creatorcontrib><creatorcontrib>Dash, Bidya</creatorcontrib><creatorcontrib>Spiegelberg, Jakob</creatorcontrib><creatorcontrib>Gottschalk, Hanno</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fieback, Laura</au><au>Dash, Bidya</au><au>Spiegelberg, Jakob</au><au>Gottschalk, Hanno</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Temporal Performance Prediction for Deep Convolutional Long Short-Term Memory Networks</atitle><jtitle>arXiv.org</jtitle><date>2023-11-13</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Quantifying predictive uncertainty of deep semantic segmentation networks is essential in safety-critical tasks. In applications like autonomous driving, where video data is available, convolutional long short-term memory networks are capable of not only providing semantic segmentations but also predicting the segmentations of the next timesteps. These models use cell states to broadcast information from previous data by taking a time series of inputs to predict one or even further steps into the future. We present a temporal postprocessing method which estimates the prediction performance of convolutional long short-term memory networks by either predicting the intersection over union of predicted and ground truth segments or classifying between intersection over union being equal to zero or greater than zero. To this end, we create temporal cell state-based input metrics per segment and investigate different models for the estimation of the predictive quality based on these metrics. We further study the influence of the number of considered cell states for the proposed metrics.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2889794636
source Free E- Journals
subjects Networks
Performance prediction
Safety critical
Segments
Semantic segmentation
Semantics
Video data
title Temporal Performance Prediction for Deep Convolutional Long Short-Term Memory Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A16%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Temporal%20Performance%20Prediction%20for%20Deep%20Convolutional%20Long%20Short-Term%20Memory%20Networks&rft.jtitle=arXiv.org&rft.au=Fieback,%20Laura&rft.date=2023-11-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2889794636%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889794636&rft_id=info:pmid/&rfr_iscdi=true