Construction of superhydrophobic PDMS@MOF-199/wood sponge hybrid membrane for ultrahigh-flux gravitational oil/water separation
Wood-derived materials have been utilized to develop filtration membranes for sustainable oil/water separation. However, it remains a significant challenge to manufacture durable wood-based membranes with high efficiency and ultra-high flux by simple methods. Herein, we report a facile strategy to f...
Gespeichert in:
Veröffentlicht in: | Wood science and technology 2023-11, Vol.57 (6), p.1421-1442 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1442 |
---|---|
container_issue | 6 |
container_start_page | 1421 |
container_title | Wood science and technology |
container_volume | 57 |
creator | Zhang, Xupeng Li, Kaiqian Guo, Longxin Li, Xianghong Xu, Zhiping Deng, Shuduan Zhu, Gang |
description | Wood-derived materials have been utilized to develop filtration membranes for sustainable oil/water separation. However, it remains a significant challenge to manufacture durable wood-based membranes with high efficiency and ultra-high flux by simple methods. Herein, we report a facile strategy to fabricate a novel superhydrophobic hybrid wood membrane (PDMS@MOF-199/WS) with ultrahigh-flux and excellent oil/water separation performance. Firstly, copper-based metal organic frameworks (MOF-199) were in situ grown on the TEMPO-oxidized wood sponge (TO-WS) substrate to construct a hierarchical micro-nano structure with internal inherent microchannels. Secondly, a super-wetting surface was formed through soaking in polydimethylsiloxane (PDMS) and heat treatment. Remarkably, the water contact angle (WCA) of PDMS@MOF-199/WS could reach 163° and the oil contact angle (OCA) was around 0°, which remained stable over a long period of ultrasonic treatment and tape peeling. More importantly, the as-prepared modified wood membrane can efficiently separate a wide range of immiscible oil/water mixtures, solely by tiny gravity, with ultra-high flux of 10,385 L m
−2
h
−1
(carbon tetrachloride/water) and separation efficiency of 99.6% (n-hexane). Furthermore, this novel membrane can also effectively separate surfactant-stabilized water-in-oil emulsions with an efficiency of as high as 97.8%. Meanwhile, the hybrid membrane displayed exceptional reusability, maintaining a high-flux of 8599.6 L m
−2
h
−1
and retaining WCA at 154.8° after 12 cycles. Our results demonstrate that the synergetic impact of MOF-199 and PDMS as a means of encoding on-surface wettability substantially improved the separation efficiency. This work opens a new avenue for the design of functional wood-derived filtration membranes for the ultrahigh flux oil–water separation. |
doi_str_mv | 10.1007/s00226-023-01502-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2889791546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889791546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-488dd087f0284fa8a718b2d8957348fec7e608e5f959c6aa33c9ac2c7a56ae6e3</originalsourceid><addsrcrecordid>eNp9kMFO4zAQhi0EEgX2BThZ4mw6duLYvoEKLCuBQII9W65jN0FpHcYJbE-8OoGutLc9zWj0_b9GHyGnHM45gJpnACEqBqJgwCUIJvfIjJfFtAgh98kMoCyYUtwckqOcXwC4UqWekY9F2uQBRz-0aUNTpHnsAzbbGlPfpGXr6ePV_dPF_cMN48bM31Oqae7TZhVos11iW9N1WC_RbQKNCenYDeiadtWw2I1_6ArdWzu4r27X0dR283c3BKQ59A6_zyfkILouhx9_5zH5fXP9vLhldw8_fy0u75gXCgZWal3XoFUEocvotFNcL0WtjVRFqWPwKlSgg4xGGl85VxTeOC-8crJyoQrFMTnb9faYXseQB_uSRpy-ylZobZThsqwmSuwojylnDNH22K4dbi0H-yXa7kTbSbT9Fm3lFCp2oTzBkxj8V_2f1CffWYL4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889791546</pqid></control><display><type>article</type><title>Construction of superhydrophobic PDMS@MOF-199/wood sponge hybrid membrane for ultrahigh-flux gravitational oil/water separation</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhang, Xupeng ; Li, Kaiqian ; Guo, Longxin ; Li, Xianghong ; Xu, Zhiping ; Deng, Shuduan ; Zhu, Gang</creator><creatorcontrib>Zhang, Xupeng ; Li, Kaiqian ; Guo, Longxin ; Li, Xianghong ; Xu, Zhiping ; Deng, Shuduan ; Zhu, Gang</creatorcontrib><description>Wood-derived materials have been utilized to develop filtration membranes for sustainable oil/water separation. However, it remains a significant challenge to manufacture durable wood-based membranes with high efficiency and ultra-high flux by simple methods. Herein, we report a facile strategy to fabricate a novel superhydrophobic hybrid wood membrane (PDMS@MOF-199/WS) with ultrahigh-flux and excellent oil/water separation performance. Firstly, copper-based metal organic frameworks (MOF-199) were in situ grown on the TEMPO-oxidized wood sponge (TO-WS) substrate to construct a hierarchical micro-nano structure with internal inherent microchannels. Secondly, a super-wetting surface was formed through soaking in polydimethylsiloxane (PDMS) and heat treatment. Remarkably, the water contact angle (WCA) of PDMS@MOF-199/WS could reach 163° and the oil contact angle (OCA) was around 0°, which remained stable over a long period of ultrasonic treatment and tape peeling. More importantly, the as-prepared modified wood membrane can efficiently separate a wide range of immiscible oil/water mixtures, solely by tiny gravity, with ultra-high flux of 10,385 L m
−2
h
−1
(carbon tetrachloride/water) and separation efficiency of 99.6% (n-hexane). Furthermore, this novel membrane can also effectively separate surfactant-stabilized water-in-oil emulsions with an efficiency of as high as 97.8%. Meanwhile, the hybrid membrane displayed exceptional reusability, maintaining a high-flux of 8599.6 L m
−2
h
−1
and retaining WCA at 154.8° after 12 cycles. Our results demonstrate that the synergetic impact of MOF-199 and PDMS as a means of encoding on-surface wettability substantially improved the separation efficiency. This work opens a new avenue for the design of functional wood-derived filtration membranes for the ultrahigh flux oil–water separation.</description><identifier>ISSN: 0043-7719</identifier><identifier>EISSN: 1432-5225</identifier><identifier>DOI: 10.1007/s00226-023-01502-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomedical and Life Sciences ; Carbon tetrachloride ; Ceramics ; Composites ; Contact angle ; Efficiency ; Filtration ; Fluctuations ; Glass ; Heat treatment ; Heat treatments ; Hexanes ; Hydrophobic surfaces ; Hydrophobicity ; Life Sciences ; Machines ; Manufacturing ; Membranes ; Metal-organic frameworks ; Microchannels ; n-Hexane ; Natural Materials ; Oils & fats ; Original ; Polydimethylsiloxane ; Processes ; Separation ; Substrates ; Ultrasonic processing ; Wettability ; Wood Science & Technology</subject><ispartof>Wood science and technology, 2023-11, Vol.57 (6), p.1421-1442</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-488dd087f0284fa8a718b2d8957348fec7e608e5f959c6aa33c9ac2c7a56ae6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00226-023-01502-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00226-023-01502-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Zhang, Xupeng</creatorcontrib><creatorcontrib>Li, Kaiqian</creatorcontrib><creatorcontrib>Guo, Longxin</creatorcontrib><creatorcontrib>Li, Xianghong</creatorcontrib><creatorcontrib>Xu, Zhiping</creatorcontrib><creatorcontrib>Deng, Shuduan</creatorcontrib><creatorcontrib>Zhu, Gang</creatorcontrib><title>Construction of superhydrophobic PDMS@MOF-199/wood sponge hybrid membrane for ultrahigh-flux gravitational oil/water separation</title><title>Wood science and technology</title><addtitle>Wood Sci Technol</addtitle><description>Wood-derived materials have been utilized to develop filtration membranes for sustainable oil/water separation. However, it remains a significant challenge to manufacture durable wood-based membranes with high efficiency and ultra-high flux by simple methods. Herein, we report a facile strategy to fabricate a novel superhydrophobic hybrid wood membrane (PDMS@MOF-199/WS) with ultrahigh-flux and excellent oil/water separation performance. Firstly, copper-based metal organic frameworks (MOF-199) were in situ grown on the TEMPO-oxidized wood sponge (TO-WS) substrate to construct a hierarchical micro-nano structure with internal inherent microchannels. Secondly, a super-wetting surface was formed through soaking in polydimethylsiloxane (PDMS) and heat treatment. Remarkably, the water contact angle (WCA) of PDMS@MOF-199/WS could reach 163° and the oil contact angle (OCA) was around 0°, which remained stable over a long period of ultrasonic treatment and tape peeling. More importantly, the as-prepared modified wood membrane can efficiently separate a wide range of immiscible oil/water mixtures, solely by tiny gravity, with ultra-high flux of 10,385 L m
−2
h
−1
(carbon tetrachloride/water) and separation efficiency of 99.6% (n-hexane). Furthermore, this novel membrane can also effectively separate surfactant-stabilized water-in-oil emulsions with an efficiency of as high as 97.8%. Meanwhile, the hybrid membrane displayed exceptional reusability, maintaining a high-flux of 8599.6 L m
−2
h
−1
and retaining WCA at 154.8° after 12 cycles. Our results demonstrate that the synergetic impact of MOF-199 and PDMS as a means of encoding on-surface wettability substantially improved the separation efficiency. This work opens a new avenue for the design of functional wood-derived filtration membranes for the ultrahigh flux oil–water separation.</description><subject>Biomedical and Life Sciences</subject><subject>Carbon tetrachloride</subject><subject>Ceramics</subject><subject>Composites</subject><subject>Contact angle</subject><subject>Efficiency</subject><subject>Filtration</subject><subject>Fluctuations</subject><subject>Glass</subject><subject>Heat treatment</subject><subject>Heat treatments</subject><subject>Hexanes</subject><subject>Hydrophobic surfaces</subject><subject>Hydrophobicity</subject><subject>Life Sciences</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Membranes</subject><subject>Metal-organic frameworks</subject><subject>Microchannels</subject><subject>n-Hexane</subject><subject>Natural Materials</subject><subject>Oils & fats</subject><subject>Original</subject><subject>Polydimethylsiloxane</subject><subject>Processes</subject><subject>Separation</subject><subject>Substrates</subject><subject>Ultrasonic processing</subject><subject>Wettability</subject><subject>Wood Science & Technology</subject><issn>0043-7719</issn><issn>1432-5225</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMFO4zAQhi0EEgX2BThZ4mw6duLYvoEKLCuBQII9W65jN0FpHcYJbE-8OoGutLc9zWj0_b9GHyGnHM45gJpnACEqBqJgwCUIJvfIjJfFtAgh98kMoCyYUtwckqOcXwC4UqWekY9F2uQBRz-0aUNTpHnsAzbbGlPfpGXr6ePV_dPF_cMN48bM31Oqae7TZhVos11iW9N1WC_RbQKNCenYDeiadtWw2I1_6ArdWzu4r27X0dR283c3BKQ59A6_zyfkILouhx9_5zH5fXP9vLhldw8_fy0u75gXCgZWal3XoFUEocvotFNcL0WtjVRFqWPwKlSgg4xGGl85VxTeOC-8crJyoQrFMTnb9faYXseQB_uSRpy-ylZobZThsqwmSuwojylnDNH22K4dbi0H-yXa7kTbSbT9Fm3lFCp2oTzBkxj8V_2f1CffWYL4</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Zhang, Xupeng</creator><creator>Li, Kaiqian</creator><creator>Guo, Longxin</creator><creator>Li, Xianghong</creator><creator>Xu, Zhiping</creator><creator>Deng, Shuduan</creator><creator>Zhu, Gang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope></search><sort><creationdate>20231101</creationdate><title>Construction of superhydrophobic PDMS@MOF-199/wood sponge hybrid membrane for ultrahigh-flux gravitational oil/water separation</title><author>Zhang, Xupeng ; Li, Kaiqian ; Guo, Longxin ; Li, Xianghong ; Xu, Zhiping ; Deng, Shuduan ; Zhu, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-488dd087f0284fa8a718b2d8957348fec7e608e5f959c6aa33c9ac2c7a56ae6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomedical and Life Sciences</topic><topic>Carbon tetrachloride</topic><topic>Ceramics</topic><topic>Composites</topic><topic>Contact angle</topic><topic>Efficiency</topic><topic>Filtration</topic><topic>Fluctuations</topic><topic>Glass</topic><topic>Heat treatment</topic><topic>Heat treatments</topic><topic>Hexanes</topic><topic>Hydrophobic surfaces</topic><topic>Hydrophobicity</topic><topic>Life Sciences</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Membranes</topic><topic>Metal-organic frameworks</topic><topic>Microchannels</topic><topic>n-Hexane</topic><topic>Natural Materials</topic><topic>Oils & fats</topic><topic>Original</topic><topic>Polydimethylsiloxane</topic><topic>Processes</topic><topic>Separation</topic><topic>Substrates</topic><topic>Ultrasonic processing</topic><topic>Wettability</topic><topic>Wood Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xupeng</creatorcontrib><creatorcontrib>Li, Kaiqian</creatorcontrib><creatorcontrib>Guo, Longxin</creatorcontrib><creatorcontrib>Li, Xianghong</creatorcontrib><creatorcontrib>Xu, Zhiping</creatorcontrib><creatorcontrib>Deng, Shuduan</creatorcontrib><creatorcontrib>Zhu, Gang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>Wood science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xupeng</au><au>Li, Kaiqian</au><au>Guo, Longxin</au><au>Li, Xianghong</au><au>Xu, Zhiping</au><au>Deng, Shuduan</au><au>Zhu, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of superhydrophobic PDMS@MOF-199/wood sponge hybrid membrane for ultrahigh-flux gravitational oil/water separation</atitle><jtitle>Wood science and technology</jtitle><stitle>Wood Sci Technol</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>57</volume><issue>6</issue><spage>1421</spage><epage>1442</epage><pages>1421-1442</pages><issn>0043-7719</issn><eissn>1432-5225</eissn><abstract>Wood-derived materials have been utilized to develop filtration membranes for sustainable oil/water separation. However, it remains a significant challenge to manufacture durable wood-based membranes with high efficiency and ultra-high flux by simple methods. Herein, we report a facile strategy to fabricate a novel superhydrophobic hybrid wood membrane (PDMS@MOF-199/WS) with ultrahigh-flux and excellent oil/water separation performance. Firstly, copper-based metal organic frameworks (MOF-199) were in situ grown on the TEMPO-oxidized wood sponge (TO-WS) substrate to construct a hierarchical micro-nano structure with internal inherent microchannels. Secondly, a super-wetting surface was formed through soaking in polydimethylsiloxane (PDMS) and heat treatment. Remarkably, the water contact angle (WCA) of PDMS@MOF-199/WS could reach 163° and the oil contact angle (OCA) was around 0°, which remained stable over a long period of ultrasonic treatment and tape peeling. More importantly, the as-prepared modified wood membrane can efficiently separate a wide range of immiscible oil/water mixtures, solely by tiny gravity, with ultra-high flux of 10,385 L m
−2
h
−1
(carbon tetrachloride/water) and separation efficiency of 99.6% (n-hexane). Furthermore, this novel membrane can also effectively separate surfactant-stabilized water-in-oil emulsions with an efficiency of as high as 97.8%. Meanwhile, the hybrid membrane displayed exceptional reusability, maintaining a high-flux of 8599.6 L m
−2
h
−1
and retaining WCA at 154.8° after 12 cycles. Our results demonstrate that the synergetic impact of MOF-199 and PDMS as a means of encoding on-surface wettability substantially improved the separation efficiency. This work opens a new avenue for the design of functional wood-derived filtration membranes for the ultrahigh flux oil–water separation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00226-023-01502-5</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-7719 |
ispartof | Wood science and technology, 2023-11, Vol.57 (6), p.1421-1442 |
issn | 0043-7719 1432-5225 |
language | eng |
recordid | cdi_proquest_journals_2889791546 |
source | Springer Nature - Complete Springer Journals |
subjects | Biomedical and Life Sciences Carbon tetrachloride Ceramics Composites Contact angle Efficiency Filtration Fluctuations Glass Heat treatment Heat treatments Hexanes Hydrophobic surfaces Hydrophobicity Life Sciences Machines Manufacturing Membranes Metal-organic frameworks Microchannels n-Hexane Natural Materials Oils & fats Original Polydimethylsiloxane Processes Separation Substrates Ultrasonic processing Wettability Wood Science & Technology |
title | Construction of superhydrophobic PDMS@MOF-199/wood sponge hybrid membrane for ultrahigh-flux gravitational oil/water separation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20superhydrophobic%20PDMS@MOF-199/wood%20sponge%20hybrid%20membrane%20for%20ultrahigh-flux%20gravitational%20oil/water%20separation&rft.jtitle=Wood%20science%20and%20technology&rft.au=Zhang,%20Xupeng&rft.date=2023-11-01&rft.volume=57&rft.issue=6&rft.spage=1421&rft.epage=1442&rft.pages=1421-1442&rft.issn=0043-7719&rft.eissn=1432-5225&rft_id=info:doi/10.1007/s00226-023-01502-5&rft_dat=%3Cproquest_cross%3E2889791546%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889791546&rft_id=info:pmid/&rfr_iscdi=true |