Construction of superhydrophobic PDMS@MOF-199/wood sponge hybrid membrane for ultrahigh-flux gravitational oil/water separation

Wood-derived materials have been utilized to develop filtration membranes for sustainable oil/water separation. However, it remains a significant challenge to manufacture durable wood-based membranes with high efficiency and ultra-high flux by simple methods. Herein, we report a facile strategy to f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wood science and technology 2023-11, Vol.57 (6), p.1421-1442
Hauptverfasser: Zhang, Xupeng, Li, Kaiqian, Guo, Longxin, Li, Xianghong, Xu, Zhiping, Deng, Shuduan, Zhu, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1442
container_issue 6
container_start_page 1421
container_title Wood science and technology
container_volume 57
creator Zhang, Xupeng
Li, Kaiqian
Guo, Longxin
Li, Xianghong
Xu, Zhiping
Deng, Shuduan
Zhu, Gang
description Wood-derived materials have been utilized to develop filtration membranes for sustainable oil/water separation. However, it remains a significant challenge to manufacture durable wood-based membranes with high efficiency and ultra-high flux by simple methods. Herein, we report a facile strategy to fabricate a novel superhydrophobic hybrid wood membrane (PDMS@MOF-199/WS) with ultrahigh-flux and excellent oil/water separation performance. Firstly, copper-based metal organic frameworks (MOF-199) were in situ grown on the TEMPO-oxidized wood sponge (TO-WS) substrate to construct a hierarchical micro-nano structure with internal inherent microchannels. Secondly, a super-wetting surface was formed through soaking in polydimethylsiloxane (PDMS) and heat treatment. Remarkably, the water contact angle (WCA) of PDMS@MOF-199/WS could reach 163° and the oil contact angle (OCA) was around 0°, which remained stable over a long period of ultrasonic treatment and tape peeling. More importantly, the as-prepared modified wood membrane can efficiently separate a wide range of immiscible oil/water mixtures, solely by tiny gravity, with ultra-high flux of 10,385 L m −2  h −1 (carbon tetrachloride/water) and separation efficiency of 99.6% (n-hexane). Furthermore, this novel membrane can also effectively separate surfactant-stabilized water-in-oil emulsions with an efficiency of as high as 97.8%. Meanwhile, the hybrid membrane displayed exceptional reusability, maintaining a high-flux of 8599.6 L m −2  h −1 and retaining WCA at 154.8° after 12 cycles. Our results demonstrate that the synergetic impact of MOF-199 and PDMS as a means of encoding on-surface wettability substantially improved the separation efficiency. This work opens a new avenue for the design of functional wood-derived filtration membranes for the ultrahigh flux oil–water separation.
doi_str_mv 10.1007/s00226-023-01502-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2889791546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889791546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-488dd087f0284fa8a718b2d8957348fec7e608e5f959c6aa33c9ac2c7a56ae6e3</originalsourceid><addsrcrecordid>eNp9kMFO4zAQhi0EEgX2BThZ4mw6duLYvoEKLCuBQII9W65jN0FpHcYJbE-8OoGutLc9zWj0_b9GHyGnHM45gJpnACEqBqJgwCUIJvfIjJfFtAgh98kMoCyYUtwckqOcXwC4UqWekY9F2uQBRz-0aUNTpHnsAzbbGlPfpGXr6ePV_dPF_cMN48bM31Oqae7TZhVos11iW9N1WC_RbQKNCenYDeiadtWw2I1_6ArdWzu4r27X0dR283c3BKQ59A6_zyfkILouhx9_5zH5fXP9vLhldw8_fy0u75gXCgZWal3XoFUEocvotFNcL0WtjVRFqWPwKlSgg4xGGl85VxTeOC-8crJyoQrFMTnb9faYXseQB_uSRpy-ylZobZThsqwmSuwojylnDNH22K4dbi0H-yXa7kTbSbT9Fm3lFCp2oTzBkxj8V_2f1CffWYL4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889791546</pqid></control><display><type>article</type><title>Construction of superhydrophobic PDMS@MOF-199/wood sponge hybrid membrane for ultrahigh-flux gravitational oil/water separation</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhang, Xupeng ; Li, Kaiqian ; Guo, Longxin ; Li, Xianghong ; Xu, Zhiping ; Deng, Shuduan ; Zhu, Gang</creator><creatorcontrib>Zhang, Xupeng ; Li, Kaiqian ; Guo, Longxin ; Li, Xianghong ; Xu, Zhiping ; Deng, Shuduan ; Zhu, Gang</creatorcontrib><description>Wood-derived materials have been utilized to develop filtration membranes for sustainable oil/water separation. However, it remains a significant challenge to manufacture durable wood-based membranes with high efficiency and ultra-high flux by simple methods. Herein, we report a facile strategy to fabricate a novel superhydrophobic hybrid wood membrane (PDMS@MOF-199/WS) with ultrahigh-flux and excellent oil/water separation performance. Firstly, copper-based metal organic frameworks (MOF-199) were in situ grown on the TEMPO-oxidized wood sponge (TO-WS) substrate to construct a hierarchical micro-nano structure with internal inherent microchannels. Secondly, a super-wetting surface was formed through soaking in polydimethylsiloxane (PDMS) and heat treatment. Remarkably, the water contact angle (WCA) of PDMS@MOF-199/WS could reach 163° and the oil contact angle (OCA) was around 0°, which remained stable over a long period of ultrasonic treatment and tape peeling. More importantly, the as-prepared modified wood membrane can efficiently separate a wide range of immiscible oil/water mixtures, solely by tiny gravity, with ultra-high flux of 10,385 L m −2  h −1 (carbon tetrachloride/water) and separation efficiency of 99.6% (n-hexane). Furthermore, this novel membrane can also effectively separate surfactant-stabilized water-in-oil emulsions with an efficiency of as high as 97.8%. Meanwhile, the hybrid membrane displayed exceptional reusability, maintaining a high-flux of 8599.6 L m −2  h −1 and retaining WCA at 154.8° after 12 cycles. Our results demonstrate that the synergetic impact of MOF-199 and PDMS as a means of encoding on-surface wettability substantially improved the separation efficiency. This work opens a new avenue for the design of functional wood-derived filtration membranes for the ultrahigh flux oil–water separation.</description><identifier>ISSN: 0043-7719</identifier><identifier>EISSN: 1432-5225</identifier><identifier>DOI: 10.1007/s00226-023-01502-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomedical and Life Sciences ; Carbon tetrachloride ; Ceramics ; Composites ; Contact angle ; Efficiency ; Filtration ; Fluctuations ; Glass ; Heat treatment ; Heat treatments ; Hexanes ; Hydrophobic surfaces ; Hydrophobicity ; Life Sciences ; Machines ; Manufacturing ; Membranes ; Metal-organic frameworks ; Microchannels ; n-Hexane ; Natural Materials ; Oils &amp; fats ; Original ; Polydimethylsiloxane ; Processes ; Separation ; Substrates ; Ultrasonic processing ; Wettability ; Wood Science &amp; Technology</subject><ispartof>Wood science and technology, 2023-11, Vol.57 (6), p.1421-1442</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-488dd087f0284fa8a718b2d8957348fec7e608e5f959c6aa33c9ac2c7a56ae6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00226-023-01502-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00226-023-01502-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Zhang, Xupeng</creatorcontrib><creatorcontrib>Li, Kaiqian</creatorcontrib><creatorcontrib>Guo, Longxin</creatorcontrib><creatorcontrib>Li, Xianghong</creatorcontrib><creatorcontrib>Xu, Zhiping</creatorcontrib><creatorcontrib>Deng, Shuduan</creatorcontrib><creatorcontrib>Zhu, Gang</creatorcontrib><title>Construction of superhydrophobic PDMS@MOF-199/wood sponge hybrid membrane for ultrahigh-flux gravitational oil/water separation</title><title>Wood science and technology</title><addtitle>Wood Sci Technol</addtitle><description>Wood-derived materials have been utilized to develop filtration membranes for sustainable oil/water separation. However, it remains a significant challenge to manufacture durable wood-based membranes with high efficiency and ultra-high flux by simple methods. Herein, we report a facile strategy to fabricate a novel superhydrophobic hybrid wood membrane (PDMS@MOF-199/WS) with ultrahigh-flux and excellent oil/water separation performance. Firstly, copper-based metal organic frameworks (MOF-199) were in situ grown on the TEMPO-oxidized wood sponge (TO-WS) substrate to construct a hierarchical micro-nano structure with internal inherent microchannels. Secondly, a super-wetting surface was formed through soaking in polydimethylsiloxane (PDMS) and heat treatment. Remarkably, the water contact angle (WCA) of PDMS@MOF-199/WS could reach 163° and the oil contact angle (OCA) was around 0°, which remained stable over a long period of ultrasonic treatment and tape peeling. More importantly, the as-prepared modified wood membrane can efficiently separate a wide range of immiscible oil/water mixtures, solely by tiny gravity, with ultra-high flux of 10,385 L m −2  h −1 (carbon tetrachloride/water) and separation efficiency of 99.6% (n-hexane). Furthermore, this novel membrane can also effectively separate surfactant-stabilized water-in-oil emulsions with an efficiency of as high as 97.8%. Meanwhile, the hybrid membrane displayed exceptional reusability, maintaining a high-flux of 8599.6 L m −2  h −1 and retaining WCA at 154.8° after 12 cycles. Our results demonstrate that the synergetic impact of MOF-199 and PDMS as a means of encoding on-surface wettability substantially improved the separation efficiency. This work opens a new avenue for the design of functional wood-derived filtration membranes for the ultrahigh flux oil–water separation.</description><subject>Biomedical and Life Sciences</subject><subject>Carbon tetrachloride</subject><subject>Ceramics</subject><subject>Composites</subject><subject>Contact angle</subject><subject>Efficiency</subject><subject>Filtration</subject><subject>Fluctuations</subject><subject>Glass</subject><subject>Heat treatment</subject><subject>Heat treatments</subject><subject>Hexanes</subject><subject>Hydrophobic surfaces</subject><subject>Hydrophobicity</subject><subject>Life Sciences</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Membranes</subject><subject>Metal-organic frameworks</subject><subject>Microchannels</subject><subject>n-Hexane</subject><subject>Natural Materials</subject><subject>Oils &amp; fats</subject><subject>Original</subject><subject>Polydimethylsiloxane</subject><subject>Processes</subject><subject>Separation</subject><subject>Substrates</subject><subject>Ultrasonic processing</subject><subject>Wettability</subject><subject>Wood Science &amp; Technology</subject><issn>0043-7719</issn><issn>1432-5225</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMFO4zAQhi0EEgX2BThZ4mw6duLYvoEKLCuBQII9W65jN0FpHcYJbE-8OoGutLc9zWj0_b9GHyGnHM45gJpnACEqBqJgwCUIJvfIjJfFtAgh98kMoCyYUtwckqOcXwC4UqWekY9F2uQBRz-0aUNTpHnsAzbbGlPfpGXr6ePV_dPF_cMN48bM31Oqae7TZhVos11iW9N1WC_RbQKNCenYDeiadtWw2I1_6ArdWzu4r27X0dR283c3BKQ59A6_zyfkILouhx9_5zH5fXP9vLhldw8_fy0u75gXCgZWal3XoFUEocvotFNcL0WtjVRFqWPwKlSgg4xGGl85VxTeOC-8crJyoQrFMTnb9faYXseQB_uSRpy-ylZobZThsqwmSuwojylnDNH22K4dbi0H-yXa7kTbSbT9Fm3lFCp2oTzBkxj8V_2f1CffWYL4</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Zhang, Xupeng</creator><creator>Li, Kaiqian</creator><creator>Guo, Longxin</creator><creator>Li, Xianghong</creator><creator>Xu, Zhiping</creator><creator>Deng, Shuduan</creator><creator>Zhu, Gang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope></search><sort><creationdate>20231101</creationdate><title>Construction of superhydrophobic PDMS@MOF-199/wood sponge hybrid membrane for ultrahigh-flux gravitational oil/water separation</title><author>Zhang, Xupeng ; Li, Kaiqian ; Guo, Longxin ; Li, Xianghong ; Xu, Zhiping ; Deng, Shuduan ; Zhu, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-488dd087f0284fa8a718b2d8957348fec7e608e5f959c6aa33c9ac2c7a56ae6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomedical and Life Sciences</topic><topic>Carbon tetrachloride</topic><topic>Ceramics</topic><topic>Composites</topic><topic>Contact angle</topic><topic>Efficiency</topic><topic>Filtration</topic><topic>Fluctuations</topic><topic>Glass</topic><topic>Heat treatment</topic><topic>Heat treatments</topic><topic>Hexanes</topic><topic>Hydrophobic surfaces</topic><topic>Hydrophobicity</topic><topic>Life Sciences</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Membranes</topic><topic>Metal-organic frameworks</topic><topic>Microchannels</topic><topic>n-Hexane</topic><topic>Natural Materials</topic><topic>Oils &amp; fats</topic><topic>Original</topic><topic>Polydimethylsiloxane</topic><topic>Processes</topic><topic>Separation</topic><topic>Substrates</topic><topic>Ultrasonic processing</topic><topic>Wettability</topic><topic>Wood Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xupeng</creatorcontrib><creatorcontrib>Li, Kaiqian</creatorcontrib><creatorcontrib>Guo, Longxin</creatorcontrib><creatorcontrib>Li, Xianghong</creatorcontrib><creatorcontrib>Xu, Zhiping</creatorcontrib><creatorcontrib>Deng, Shuduan</creatorcontrib><creatorcontrib>Zhu, Gang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>Wood science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xupeng</au><au>Li, Kaiqian</au><au>Guo, Longxin</au><au>Li, Xianghong</au><au>Xu, Zhiping</au><au>Deng, Shuduan</au><au>Zhu, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of superhydrophobic PDMS@MOF-199/wood sponge hybrid membrane for ultrahigh-flux gravitational oil/water separation</atitle><jtitle>Wood science and technology</jtitle><stitle>Wood Sci Technol</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>57</volume><issue>6</issue><spage>1421</spage><epage>1442</epage><pages>1421-1442</pages><issn>0043-7719</issn><eissn>1432-5225</eissn><abstract>Wood-derived materials have been utilized to develop filtration membranes for sustainable oil/water separation. However, it remains a significant challenge to manufacture durable wood-based membranes with high efficiency and ultra-high flux by simple methods. Herein, we report a facile strategy to fabricate a novel superhydrophobic hybrid wood membrane (PDMS@MOF-199/WS) with ultrahigh-flux and excellent oil/water separation performance. Firstly, copper-based metal organic frameworks (MOF-199) were in situ grown on the TEMPO-oxidized wood sponge (TO-WS) substrate to construct a hierarchical micro-nano structure with internal inherent microchannels. Secondly, a super-wetting surface was formed through soaking in polydimethylsiloxane (PDMS) and heat treatment. Remarkably, the water contact angle (WCA) of PDMS@MOF-199/WS could reach 163° and the oil contact angle (OCA) was around 0°, which remained stable over a long period of ultrasonic treatment and tape peeling. More importantly, the as-prepared modified wood membrane can efficiently separate a wide range of immiscible oil/water mixtures, solely by tiny gravity, with ultra-high flux of 10,385 L m −2  h −1 (carbon tetrachloride/water) and separation efficiency of 99.6% (n-hexane). Furthermore, this novel membrane can also effectively separate surfactant-stabilized water-in-oil emulsions with an efficiency of as high as 97.8%. Meanwhile, the hybrid membrane displayed exceptional reusability, maintaining a high-flux of 8599.6 L m −2  h −1 and retaining WCA at 154.8° after 12 cycles. Our results demonstrate that the synergetic impact of MOF-199 and PDMS as a means of encoding on-surface wettability substantially improved the separation efficiency. This work opens a new avenue for the design of functional wood-derived filtration membranes for the ultrahigh flux oil–water separation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00226-023-01502-5</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-7719
ispartof Wood science and technology, 2023-11, Vol.57 (6), p.1421-1442
issn 0043-7719
1432-5225
language eng
recordid cdi_proquest_journals_2889791546
source Springer Nature - Complete Springer Journals
subjects Biomedical and Life Sciences
Carbon tetrachloride
Ceramics
Composites
Contact angle
Efficiency
Filtration
Fluctuations
Glass
Heat treatment
Heat treatments
Hexanes
Hydrophobic surfaces
Hydrophobicity
Life Sciences
Machines
Manufacturing
Membranes
Metal-organic frameworks
Microchannels
n-Hexane
Natural Materials
Oils & fats
Original
Polydimethylsiloxane
Processes
Separation
Substrates
Ultrasonic processing
Wettability
Wood Science & Technology
title Construction of superhydrophobic PDMS@MOF-199/wood sponge hybrid membrane for ultrahigh-flux gravitational oil/water separation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20superhydrophobic%20PDMS@MOF-199/wood%20sponge%20hybrid%20membrane%20for%20ultrahigh-flux%20gravitational%20oil/water%20separation&rft.jtitle=Wood%20science%20and%20technology&rft.au=Zhang,%20Xupeng&rft.date=2023-11-01&rft.volume=57&rft.issue=6&rft.spage=1421&rft.epage=1442&rft.pages=1421-1442&rft.issn=0043-7719&rft.eissn=1432-5225&rft_id=info:doi/10.1007/s00226-023-01502-5&rft_dat=%3Cproquest_cross%3E2889791546%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889791546&rft_id=info:pmid/&rfr_iscdi=true