Advanced skin tumor detection using convolutional neural network

Precisely detecting and estimating the depth of tumors is more essential during the surgery of tumor removal. In robot-assisted surgery, robots automatically touch the affected area, it is very helpful to produce a precise detection, depth estimation, and low-level intimation of once traditional tis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Swaminathan, K., Nalinavidhusha, S., Nandhini, S., Nivetha, B., Swathi, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2822
creator Swaminathan, K.
Nalinavidhusha, S.
Nandhini, S.
Nivetha, B.
Swathi, R.
description Precisely detecting and estimating the depth of tumors is more essential during the surgery of tumor removal. In robot-assisted surgery, robots automatically touch the affected area, it is very helpful to produce a precise detection, depth estimation, and low-level intimation of once traditional tissues surround tumors. Here we tend to outline by mimicking the human finger bit, so expected are victimisation by the CNN-Conventional Neural Network are worked with the photographs by taking. The step by method might be 1st take the growth CT-Scan pictures that space can influence within the space of tissue, the tissue was skinny space of the body, therefore it’ll simply influence the body. At the instant of the time surgical was terribly troublesome to handle the operation. Therefore, that’s why we tend to use the CNN formula to predict the photographs so {we can we’ll we are going to} classify the photographs and predict the photographs will show because the accuracy ninety-nine to check out the time.
doi_str_mv 10.1063/5.0179974
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2889742376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889742376</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-571b4a478f695b7d308c5c291f12008b06e0c2659afd5c3401fcea37f69967993</originalsourceid><addsrcrecordid>eNotkM9LwzAcxYMoWKcH_4OCN6Hzm6T5dXMMp8LAi4K3kKapdOuamaQT_3tbt9ODx4fHew-hWwxzDJw-sDlgoZQoz1CGGcOF4JifowxAlQUp6ecluopxA0CUEDJDj4v6YHrr6jxu2z5Pw86HvHbJ2dT6Ph9i23_l1vcH3w2TY7q8d0P4l_Tjw_YaXTSmi-7mpDP0sXp6X74U67fn1-ViXewxpalgAlelKYVsuGKVqClIyyxRuMEEQFbAHVjCmTJNzSwtATfWGSpGXPFxEJ2hu2PuPvjvwcWkN34IY5-oiZTjYEIFH6n7IxVtm8xUWO9DuzPhV2PQ00Oa6dND9A8YbVeO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2889742376</pqid></control><display><type>conference_proceeding</type><title>Advanced skin tumor detection using convolutional neural network</title><source>AIP Journals Complete</source><creator>Swaminathan, K. ; Nalinavidhusha, S. ; Nandhini, S. ; Nivetha, B. ; Swathi, R.</creator><contributor>Srinivasan, R. ; Balasubramanian, PL ; Jeganathan, M. ; Sathish, T. ; Babu, A.B. Karthick Anand ; Vijayan, V.</contributor><creatorcontrib>Swaminathan, K. ; Nalinavidhusha, S. ; Nandhini, S. ; Nivetha, B. ; Swathi, R. ; Srinivasan, R. ; Balasubramanian, PL ; Jeganathan, M. ; Sathish, T. ; Babu, A.B. Karthick Anand ; Vijayan, V.</creatorcontrib><description>Precisely detecting and estimating the depth of tumors is more essential during the surgery of tumor removal. In robot-assisted surgery, robots automatically touch the affected area, it is very helpful to produce a precise detection, depth estimation, and low-level intimation of once traditional tissues surround tumors. Here we tend to outline by mimicking the human finger bit, so expected are victimisation by the CNN-Conventional Neural Network are worked with the photographs by taking. The step by method might be 1st take the growth CT-Scan pictures that space can influence within the space of tissue, the tissue was skinny space of the body, therefore it’ll simply influence the body. At the instant of the time surgical was terribly troublesome to handle the operation. Therefore, that’s why we tend to use the CNN formula to predict the photographs so {we can we’ll we are going to} classify the photographs and predict the photographs will show because the accuracy ninety-nine to check out the time.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0179974</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial neural networks ; Automation ; Computed tomography ; Estimation ; Fingers ; Neural networks ; Robotic surgery ; Tumors</subject><ispartof>AIP conference proceedings, 2023, Vol.2822 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0179974$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4510,23929,23930,25139,27923,27924,76155</link.rule.ids></links><search><contributor>Srinivasan, R.</contributor><contributor>Balasubramanian, PL</contributor><contributor>Jeganathan, M.</contributor><contributor>Sathish, T.</contributor><contributor>Babu, A.B. Karthick Anand</contributor><contributor>Vijayan, V.</contributor><creatorcontrib>Swaminathan, K.</creatorcontrib><creatorcontrib>Nalinavidhusha, S.</creatorcontrib><creatorcontrib>Nandhini, S.</creatorcontrib><creatorcontrib>Nivetha, B.</creatorcontrib><creatorcontrib>Swathi, R.</creatorcontrib><title>Advanced skin tumor detection using convolutional neural network</title><title>AIP conference proceedings</title><description>Precisely detecting and estimating the depth of tumors is more essential during the surgery of tumor removal. In robot-assisted surgery, robots automatically touch the affected area, it is very helpful to produce a precise detection, depth estimation, and low-level intimation of once traditional tissues surround tumors. Here we tend to outline by mimicking the human finger bit, so expected are victimisation by the CNN-Conventional Neural Network are worked with the photographs by taking. The step by method might be 1st take the growth CT-Scan pictures that space can influence within the space of tissue, the tissue was skinny space of the body, therefore it’ll simply influence the body. At the instant of the time surgical was terribly troublesome to handle the operation. Therefore, that’s why we tend to use the CNN formula to predict the photographs so {we can we’ll we are going to} classify the photographs and predict the photographs will show because the accuracy ninety-nine to check out the time.</description><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Computed tomography</subject><subject>Estimation</subject><subject>Fingers</subject><subject>Neural networks</subject><subject>Robotic surgery</subject><subject>Tumors</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkM9LwzAcxYMoWKcH_4OCN6Hzm6T5dXMMp8LAi4K3kKapdOuamaQT_3tbt9ODx4fHew-hWwxzDJw-sDlgoZQoz1CGGcOF4JifowxAlQUp6ecluopxA0CUEDJDj4v6YHrr6jxu2z5Pw86HvHbJ2dT6Ph9i23_l1vcH3w2TY7q8d0P4l_Tjw_YaXTSmi-7mpDP0sXp6X74U67fn1-ViXewxpalgAlelKYVsuGKVqClIyyxRuMEEQFbAHVjCmTJNzSwtATfWGSpGXPFxEJ2hu2PuPvjvwcWkN34IY5-oiZTjYEIFH6n7IxVtm8xUWO9DuzPhV2PQ00Oa6dND9A8YbVeO</recordid><startdate>20231114</startdate><enddate>20231114</enddate><creator>Swaminathan, K.</creator><creator>Nalinavidhusha, S.</creator><creator>Nandhini, S.</creator><creator>Nivetha, B.</creator><creator>Swathi, R.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231114</creationdate><title>Advanced skin tumor detection using convolutional neural network</title><author>Swaminathan, K. ; Nalinavidhusha, S. ; Nandhini, S. ; Nivetha, B. ; Swathi, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-571b4a478f695b7d308c5c291f12008b06e0c2659afd5c3401fcea37f69967993</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Computed tomography</topic><topic>Estimation</topic><topic>Fingers</topic><topic>Neural networks</topic><topic>Robotic surgery</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swaminathan, K.</creatorcontrib><creatorcontrib>Nalinavidhusha, S.</creatorcontrib><creatorcontrib>Nandhini, S.</creatorcontrib><creatorcontrib>Nivetha, B.</creatorcontrib><creatorcontrib>Swathi, R.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swaminathan, K.</au><au>Nalinavidhusha, S.</au><au>Nandhini, S.</au><au>Nivetha, B.</au><au>Swathi, R.</au><au>Srinivasan, R.</au><au>Balasubramanian, PL</au><au>Jeganathan, M.</au><au>Sathish, T.</au><au>Babu, A.B. Karthick Anand</au><au>Vijayan, V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Advanced skin tumor detection using convolutional neural network</atitle><btitle>AIP conference proceedings</btitle><date>2023-11-14</date><risdate>2023</risdate><volume>2822</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Precisely detecting and estimating the depth of tumors is more essential during the surgery of tumor removal. In robot-assisted surgery, robots automatically touch the affected area, it is very helpful to produce a precise detection, depth estimation, and low-level intimation of once traditional tissues surround tumors. Here we tend to outline by mimicking the human finger bit, so expected are victimisation by the CNN-Conventional Neural Network are worked with the photographs by taking. The step by method might be 1st take the growth CT-Scan pictures that space can influence within the space of tissue, the tissue was skinny space of the body, therefore it’ll simply influence the body. At the instant of the time surgical was terribly troublesome to handle the operation. Therefore, that’s why we tend to use the CNN formula to predict the photographs so {we can we’ll we are going to} classify the photographs and predict the photographs will show because the accuracy ninety-nine to check out the time.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0179974</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2822 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2889742376
source AIP Journals Complete
subjects Artificial neural networks
Automation
Computed tomography
Estimation
Fingers
Neural networks
Robotic surgery
Tumors
title Advanced skin tumor detection using convolutional neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A08%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Advanced%20skin%20tumor%20detection%20using%20convolutional%20neural%20network&rft.btitle=AIP%20conference%20proceedings&rft.au=Swaminathan,%20K.&rft.date=2023-11-14&rft.volume=2822&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0179974&rft_dat=%3Cproquest_scita%3E2889742376%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889742376&rft_id=info:pmid/&rfr_iscdi=true