Multiple kidney disease prediction using deep learning algorithm

Renal calculus, also known as renal disease formation, is a condition in which crystals form in the urine as a result of a chemical concentration or hereditary vulnerability. Even infants are susceptible to kidney illness, and yet the majority of kidney disease cases go unnoticed, especially in case...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nithya, T. M., Devi, B. Padmini, Rajendrakannammal, G., Meena, M. Arthy, Firthose, A. Jannathul, Jothika, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2822
creator Nithya, T. M.
Devi, B. Padmini
Rajendrakannammal, G.
Meena, M. Arthy
Firthose, A. Jannathul
Jothika, R.
description Renal calculus, also known as renal disease formation, is a condition in which crystals form in the urine as a result of a chemical concentration or hereditary vulnerability. Even infants are susceptible to kidney illness, and yet the majority of kidney disease cases go unnoticed, especially in cases where significant abdominal pain or an irregular urine color is present. Furthermore, frequent symptoms of renal disease include fever, discomfort, and nausea, which can be mistaken for other illnesses. Kidney disease diagnosis is critical, especially in the early stages, to allow for intervention or appropriate medical therapy. Kidney disease reduces kidney function and causes dilatation of the kidneys when it is present or recurs. This paper describes a method for detecting kidney disorders using various image processing stages. The first phase is image pre-processing with filters, in which the image is smoothed and noise is removed. Next, the image segmentation is performed on the preprocessed image using guided active contour method. Then using Back propagation neural network algorithm to identify the diseases in kidney images. Experimental results show that the proposed deep learning provides improved accuracy in disease prediction.
doi_str_mv 10.1063/5.0173794
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2889742351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889742351</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-312608b045db31425022d946747381d6b93a3b154ae9a9cb6cd5e63fbf6046293</originalsourceid><addsrcrecordid>eNotkE1Lw0AYhBdRMFYP_oOANyF13333I3tTilWh4kXB27LJburWNIm7yaH_3pb2NAw8zAxDyC3QOVCJD2JOQaHS_IxkIAQUSoI8JxmlmheM4_cluUppQynTSpUZeXyf2jEMrc9_g-v8LncheZt8PkTvQj2GvsunFLp17rwf8tbb2B2cbdd9DOPP9ppcNLZN_uakM_K1fP5cvBarj5e3xdOqGABxLBCYpGVFuXAVAmeCMuY0l4orLMHJSqPFCgS3XltdV7J2wktsqkZSLpnGGbk75g6x_5t8Gs2mn2K3rzSsLLXiDAXsqfsjleow2sN6M8SwtXFngJrDQ0aY00P4D6NPVuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2889742351</pqid></control><display><type>conference_proceeding</type><title>Multiple kidney disease prediction using deep learning algorithm</title><source>AIP Journals Complete</source><creator>Nithya, T. M. ; Devi, B. Padmini ; Rajendrakannammal, G. ; Meena, M. Arthy ; Firthose, A. Jannathul ; Jothika, R.</creator><contributor>Srinivasan, R. ; Balasubramanian, PL ; Jeganathan, M. ; Sathish, T. ; Babu, A.B. Karthick Anand ; Vijayan, V.</contributor><creatorcontrib>Nithya, T. M. ; Devi, B. Padmini ; Rajendrakannammal, G. ; Meena, M. Arthy ; Firthose, A. Jannathul ; Jothika, R. ; Srinivasan, R. ; Balasubramanian, PL ; Jeganathan, M. ; Sathish, T. ; Babu, A.B. Karthick Anand ; Vijayan, V.</creatorcontrib><description>Renal calculus, also known as renal disease formation, is a condition in which crystals form in the urine as a result of a chemical concentration or hereditary vulnerability. Even infants are susceptible to kidney illness, and yet the majority of kidney disease cases go unnoticed, especially in cases where significant abdominal pain or an irregular urine color is present. Furthermore, frequent symptoms of renal disease include fever, discomfort, and nausea, which can be mistaken for other illnesses. Kidney disease diagnosis is critical, especially in the early stages, to allow for intervention or appropriate medical therapy. Kidney disease reduces kidney function and causes dilatation of the kidneys when it is present or recurs. This paper describes a method for detecting kidney disorders using various image processing stages. The first phase is image pre-processing with filters, in which the image is smoothed and noise is removed. Next, the image segmentation is performed on the preprocessed image using guided active contour method. Then using Back propagation neural network algorithm to identify the diseases in kidney images. Experimental results show that the proposed deep learning provides improved accuracy in disease prediction.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0173794</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Back propagation networks ; Calculi ; Deep learning ; Illnesses ; Image filters ; Image processing ; Image segmentation ; Kidney diseases ; Machine learning ; Medical imaging ; Neural networks ; Signs and symptoms ; Urine</subject><ispartof>AIP Conference Proceedings, 2023, Vol.2822 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0173794$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Srinivasan, R.</contributor><contributor>Balasubramanian, PL</contributor><contributor>Jeganathan, M.</contributor><contributor>Sathish, T.</contributor><contributor>Babu, A.B. Karthick Anand</contributor><contributor>Vijayan, V.</contributor><creatorcontrib>Nithya, T. M.</creatorcontrib><creatorcontrib>Devi, B. Padmini</creatorcontrib><creatorcontrib>Rajendrakannammal, G.</creatorcontrib><creatorcontrib>Meena, M. Arthy</creatorcontrib><creatorcontrib>Firthose, A. Jannathul</creatorcontrib><creatorcontrib>Jothika, R.</creatorcontrib><title>Multiple kidney disease prediction using deep learning algorithm</title><title>AIP Conference Proceedings</title><description>Renal calculus, also known as renal disease formation, is a condition in which crystals form in the urine as a result of a chemical concentration or hereditary vulnerability. Even infants are susceptible to kidney illness, and yet the majority of kidney disease cases go unnoticed, especially in cases where significant abdominal pain or an irregular urine color is present. Furthermore, frequent symptoms of renal disease include fever, discomfort, and nausea, which can be mistaken for other illnesses. Kidney disease diagnosis is critical, especially in the early stages, to allow for intervention or appropriate medical therapy. Kidney disease reduces kidney function and causes dilatation of the kidneys when it is present or recurs. This paper describes a method for detecting kidney disorders using various image processing stages. The first phase is image pre-processing with filters, in which the image is smoothed and noise is removed. Next, the image segmentation is performed on the preprocessed image using guided active contour method. Then using Back propagation neural network algorithm to identify the diseases in kidney images. Experimental results show that the proposed deep learning provides improved accuracy in disease prediction.</description><subject>Algorithms</subject><subject>Back propagation networks</subject><subject>Calculi</subject><subject>Deep learning</subject><subject>Illnesses</subject><subject>Image filters</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Kidney diseases</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Signs and symptoms</subject><subject>Urine</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1Lw0AYhBdRMFYP_oOANyF13333I3tTilWh4kXB27LJburWNIm7yaH_3pb2NAw8zAxDyC3QOVCJD2JOQaHS_IxkIAQUSoI8JxmlmheM4_cluUppQynTSpUZeXyf2jEMrc9_g-v8LncheZt8PkTvQj2GvsunFLp17rwf8tbb2B2cbdd9DOPP9ppcNLZN_uakM_K1fP5cvBarj5e3xdOqGABxLBCYpGVFuXAVAmeCMuY0l4orLMHJSqPFCgS3XltdV7J2wktsqkZSLpnGGbk75g6x_5t8Gs2mn2K3rzSsLLXiDAXsqfsjleow2sN6M8SwtXFngJrDQ0aY00P4D6NPVuQ</recordid><startdate>20231114</startdate><enddate>20231114</enddate><creator>Nithya, T. M.</creator><creator>Devi, B. Padmini</creator><creator>Rajendrakannammal, G.</creator><creator>Meena, M. Arthy</creator><creator>Firthose, A. Jannathul</creator><creator>Jothika, R.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231114</creationdate><title>Multiple kidney disease prediction using deep learning algorithm</title><author>Nithya, T. M. ; Devi, B. Padmini ; Rajendrakannammal, G. ; Meena, M. Arthy ; Firthose, A. Jannathul ; Jothika, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-312608b045db31425022d946747381d6b93a3b154ae9a9cb6cd5e63fbf6046293</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Back propagation networks</topic><topic>Calculi</topic><topic>Deep learning</topic><topic>Illnesses</topic><topic>Image filters</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Kidney diseases</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Signs and symptoms</topic><topic>Urine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nithya, T. M.</creatorcontrib><creatorcontrib>Devi, B. Padmini</creatorcontrib><creatorcontrib>Rajendrakannammal, G.</creatorcontrib><creatorcontrib>Meena, M. Arthy</creatorcontrib><creatorcontrib>Firthose, A. Jannathul</creatorcontrib><creatorcontrib>Jothika, R.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nithya, T. M.</au><au>Devi, B. Padmini</au><au>Rajendrakannammal, G.</au><au>Meena, M. Arthy</au><au>Firthose, A. Jannathul</au><au>Jothika, R.</au><au>Srinivasan, R.</au><au>Balasubramanian, PL</au><au>Jeganathan, M.</au><au>Sathish, T.</au><au>Babu, A.B. Karthick Anand</au><au>Vijayan, V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multiple kidney disease prediction using deep learning algorithm</atitle><btitle>AIP Conference Proceedings</btitle><date>2023-11-14</date><risdate>2023</risdate><volume>2822</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Renal calculus, also known as renal disease formation, is a condition in which crystals form in the urine as a result of a chemical concentration or hereditary vulnerability. Even infants are susceptible to kidney illness, and yet the majority of kidney disease cases go unnoticed, especially in cases where significant abdominal pain or an irregular urine color is present. Furthermore, frequent symptoms of renal disease include fever, discomfort, and nausea, which can be mistaken for other illnesses. Kidney disease diagnosis is critical, especially in the early stages, to allow for intervention or appropriate medical therapy. Kidney disease reduces kidney function and causes dilatation of the kidneys when it is present or recurs. This paper describes a method for detecting kidney disorders using various image processing stages. The first phase is image pre-processing with filters, in which the image is smoothed and noise is removed. Next, the image segmentation is performed on the preprocessed image using guided active contour method. Then using Back propagation neural network algorithm to identify the diseases in kidney images. Experimental results show that the proposed deep learning provides improved accuracy in disease prediction.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0173794</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2023, Vol.2822 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2889742351
source AIP Journals Complete
subjects Algorithms
Back propagation networks
Calculi
Deep learning
Illnesses
Image filters
Image processing
Image segmentation
Kidney diseases
Machine learning
Medical imaging
Neural networks
Signs and symptoms
Urine
title Multiple kidney disease prediction using deep learning algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A51%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multiple%20kidney%20disease%20prediction%20using%20deep%20learning%20algorithm&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Nithya,%20T.%20M.&rft.date=2023-11-14&rft.volume=2822&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0173794&rft_dat=%3Cproquest_scita%3E2889742351%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889742351&rft_id=info:pmid/&rfr_iscdi=true