Image and dataset based nutrition estimation for hospitalized patients using AI

The food nutrition intake calculator detects the nutrition level of the hospitalized patient’s food. The objective of the system is to predict the images of the food which the patients will take in hospital. It detects the nutrient level whether it is a higher level or a lower level of the nutrient....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sathana, V., Sathya, M., Swathi, R., Swetha, J., Vaishnavi, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2822
creator Sathana, V.
Sathya, M.
Swathi, R.
Swetha, J.
Vaishnavi, S.
description The food nutrition intake calculator detects the nutrition level of the hospitalized patient’s food. The objective of the system is to predict the images of the food which the patients will take in hospital. It detects the nutrient level whether it is a higher level or a lower level of the nutrient. In this process, the food intake images of what the patients have eaten in the hospital. Here the images were predicted by the image processing method. In image processing, classification of the images done by SVM algorithm. In addition, Gaussian Smoothing algorithm, which is used to detect outline of the image. The prediction of the food’s nutrition level is measured by grams. The food information collected from the hospital are stored in the database. After that patient intake food image is compared with database. Then the result of the image processing method will be converted into the dataset. The result of the dataset is classified by the Few shot learning algorithm. It also shows the recovery details of the patient. In future, there is a need to improve more processes for food nutrition intake. Nonetheless, the trouble lies in the way that the modern comment prerequisites characteristically limit the quality and the size of the food pictures information base for a supplement consumption appraisal.
doi_str_mv 10.1063/5.0173223
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2889742193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889742193</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-b26c3f7e18ea2c32914d251f477bcbdc931905e33277a27f284a11b0ef9b3eff3</originalsourceid><addsrcrecordid>eNotkE9PwzAMxSMEEmVw4BtE4obUEdtt0xyniT-TJu0CErcobZPRaWtLkx7g05OxXWzL-sl-7zF2D2IOoqCnfC5AEiJdsATyHFJZQHHJEiFUlmJGn9fsxvudEKikLBO2WR3M1nLTNbwxwXgbeBVrw7spjG1o-45bH9qD-R9dP_Kv3g9tMPv2N1JD3NsueD75ttvyxeqWXTmz9_bu3Gfs4-X5ffmWrjevq-VinQ5AFNIKi5qctFBagzWhgqzBHFwmZVVXTa0IlMgtEUppUDosMwNQCetURdY5mrGH091h7L-nKFHv-mns4kuNZalkhqAoUo8nytdR8tGCHsZoZvzRIPQxMJ3rc2D0ByyrXTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2889742193</pqid></control><display><type>conference_proceeding</type><title>Image and dataset based nutrition estimation for hospitalized patients using AI</title><source>AIP Journals Complete</source><creator>Sathana, V. ; Sathya, M. ; Swathi, R. ; Swetha, J. ; Vaishnavi, S.</creator><contributor>Srinivasan, R. ; Balasubramanian, PL ; Jeganathan, M. ; Sathish, T. ; Babu, A.B. Karthick Anand ; Vijayan, V.</contributor><creatorcontrib>Sathana, V. ; Sathya, M. ; Swathi, R. ; Swetha, J. ; Vaishnavi, S. ; Srinivasan, R. ; Balasubramanian, PL ; Jeganathan, M. ; Sathish, T. ; Babu, A.B. Karthick Anand ; Vijayan, V.</creatorcontrib><description>The food nutrition intake calculator detects the nutrition level of the hospitalized patient’s food. The objective of the system is to predict the images of the food which the patients will take in hospital. It detects the nutrient level whether it is a higher level or a lower level of the nutrient. In this process, the food intake images of what the patients have eaten in the hospital. Here the images were predicted by the image processing method. In image processing, classification of the images done by SVM algorithm. In addition, Gaussian Smoothing algorithm, which is used to detect outline of the image. The prediction of the food’s nutrition level is measured by grams. The food information collected from the hospital are stored in the database. After that patient intake food image is compared with database. Then the result of the image processing method will be converted into the dataset. The result of the dataset is classified by the Few shot learning algorithm. It also shows the recovery details of the patient. In future, there is a need to improve more processes for food nutrition intake. Nonetheless, the trouble lies in the way that the modern comment prerequisites characteristically limit the quality and the size of the food pictures information base for a supplement consumption appraisal.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0173223</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Datasets ; Food ; Food intake ; Hospitals ; Image classification ; Image processing ; Machine learning ; Nutrition ; Patients ; Smoothing ; Support vector machines</subject><ispartof>AIP conference proceedings, 2023, Vol.2822 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0173223$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Srinivasan, R.</contributor><contributor>Balasubramanian, PL</contributor><contributor>Jeganathan, M.</contributor><contributor>Sathish, T.</contributor><contributor>Babu, A.B. Karthick Anand</contributor><contributor>Vijayan, V.</contributor><creatorcontrib>Sathana, V.</creatorcontrib><creatorcontrib>Sathya, M.</creatorcontrib><creatorcontrib>Swathi, R.</creatorcontrib><creatorcontrib>Swetha, J.</creatorcontrib><creatorcontrib>Vaishnavi, S.</creatorcontrib><title>Image and dataset based nutrition estimation for hospitalized patients using AI</title><title>AIP conference proceedings</title><description>The food nutrition intake calculator detects the nutrition level of the hospitalized patient’s food. The objective of the system is to predict the images of the food which the patients will take in hospital. It detects the nutrient level whether it is a higher level or a lower level of the nutrient. In this process, the food intake images of what the patients have eaten in the hospital. Here the images were predicted by the image processing method. In image processing, classification of the images done by SVM algorithm. In addition, Gaussian Smoothing algorithm, which is used to detect outline of the image. The prediction of the food’s nutrition level is measured by grams. The food information collected from the hospital are stored in the database. After that patient intake food image is compared with database. Then the result of the image processing method will be converted into the dataset. The result of the dataset is classified by the Few shot learning algorithm. It also shows the recovery details of the patient. In future, there is a need to improve more processes for food nutrition intake. Nonetheless, the trouble lies in the way that the modern comment prerequisites characteristically limit the quality and the size of the food pictures information base for a supplement consumption appraisal.</description><subject>Algorithms</subject><subject>Datasets</subject><subject>Food</subject><subject>Food intake</subject><subject>Hospitals</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>Nutrition</subject><subject>Patients</subject><subject>Smoothing</subject><subject>Support vector machines</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE9PwzAMxSMEEmVw4BtE4obUEdtt0xyniT-TJu0CErcobZPRaWtLkx7g05OxXWzL-sl-7zF2D2IOoqCnfC5AEiJdsATyHFJZQHHJEiFUlmJGn9fsxvudEKikLBO2WR3M1nLTNbwxwXgbeBVrw7spjG1o-45bH9qD-R9dP_Kv3g9tMPv2N1JD3NsueD75ttvyxeqWXTmz9_bu3Gfs4-X5ffmWrjevq-VinQ5AFNIKi5qctFBagzWhgqzBHFwmZVVXTa0IlMgtEUppUDosMwNQCetURdY5mrGH091h7L-nKFHv-mns4kuNZalkhqAoUo8nytdR8tGCHsZoZvzRIPQxMJ3rc2D0ByyrXTg</recordid><startdate>20231114</startdate><enddate>20231114</enddate><creator>Sathana, V.</creator><creator>Sathya, M.</creator><creator>Swathi, R.</creator><creator>Swetha, J.</creator><creator>Vaishnavi, S.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231114</creationdate><title>Image and dataset based nutrition estimation for hospitalized patients using AI</title><author>Sathana, V. ; Sathya, M. ; Swathi, R. ; Swetha, J. ; Vaishnavi, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-b26c3f7e18ea2c32914d251f477bcbdc931905e33277a27f284a11b0ef9b3eff3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Datasets</topic><topic>Food</topic><topic>Food intake</topic><topic>Hospitals</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>Nutrition</topic><topic>Patients</topic><topic>Smoothing</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sathana, V.</creatorcontrib><creatorcontrib>Sathya, M.</creatorcontrib><creatorcontrib>Swathi, R.</creatorcontrib><creatorcontrib>Swetha, J.</creatorcontrib><creatorcontrib>Vaishnavi, S.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sathana, V.</au><au>Sathya, M.</au><au>Swathi, R.</au><au>Swetha, J.</au><au>Vaishnavi, S.</au><au>Srinivasan, R.</au><au>Balasubramanian, PL</au><au>Jeganathan, M.</au><au>Sathish, T.</au><au>Babu, A.B. Karthick Anand</au><au>Vijayan, V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Image and dataset based nutrition estimation for hospitalized patients using AI</atitle><btitle>AIP conference proceedings</btitle><date>2023-11-14</date><risdate>2023</risdate><volume>2822</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The food nutrition intake calculator detects the nutrition level of the hospitalized patient’s food. The objective of the system is to predict the images of the food which the patients will take in hospital. It detects the nutrient level whether it is a higher level or a lower level of the nutrient. In this process, the food intake images of what the patients have eaten in the hospital. Here the images were predicted by the image processing method. In image processing, classification of the images done by SVM algorithm. In addition, Gaussian Smoothing algorithm, which is used to detect outline of the image. The prediction of the food’s nutrition level is measured by grams. The food information collected from the hospital are stored in the database. After that patient intake food image is compared with database. Then the result of the image processing method will be converted into the dataset. The result of the dataset is classified by the Few shot learning algorithm. It also shows the recovery details of the patient. In future, there is a need to improve more processes for food nutrition intake. Nonetheless, the trouble lies in the way that the modern comment prerequisites characteristically limit the quality and the size of the food pictures information base for a supplement consumption appraisal.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0173223</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2822 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2889742193
source AIP Journals Complete
subjects Algorithms
Datasets
Food
Food intake
Hospitals
Image classification
Image processing
Machine learning
Nutrition
Patients
Smoothing
Support vector machines
title Image and dataset based nutrition estimation for hospitalized patients using AI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A41%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Image%20and%20dataset%20based%20nutrition%20estimation%20for%20hospitalized%20patients%20using%20AI&rft.btitle=AIP%20conference%20proceedings&rft.au=Sathana,%20V.&rft.date=2023-11-14&rft.volume=2822&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0173223&rft_dat=%3Cproquest_scita%3E2889742193%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889742193&rft_id=info:pmid/&rfr_iscdi=true