Improving heat resistance of Al–Cu–Li alloy with the addition of Sc and Si

Al–Cu–Li alloys are important third-generation aluminum–lithium alloys in the aerospace field; however, they suffer from a service temperature below 100°C. In this work, we propose a new strategy for improving the heat resistance of Al–Cu–Li alloys at 200–300°C by promoting the nucleation of θ′ prec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China materials 2023-11, Vol.66 (11), p.4285-4294
Hauptverfasser: Xue, Hao, Li, Jiaming, Wang, Zhiqi, Bai, Junyuan, Zhao, Zhihao, Qin, Gaowu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4294
container_issue 11
container_start_page 4285
container_title Science China materials
container_volume 66
creator Xue, Hao
Li, Jiaming
Wang, Zhiqi
Bai, Junyuan
Zhao, Zhihao
Qin, Gaowu
description Al–Cu–Li alloys are important third-generation aluminum–lithium alloys in the aerospace field; however, they suffer from a service temperature below 100°C. In this work, we propose a new strategy for improving the heat resistance of Al–Cu–Li alloys at 200–300°C by promoting the nucleation of θ′ precipitates after dissolving T1 precipitates during thermal exposure with the minor addition of Sc and Si. During thermal exposure at 200–300°C, numerous nanoprecipitates of θ′ nucleate after dissolving some T1 precipitates in the minor-alloyed Al–Cu–Li alloy with Sc and Si, exhibiting high thermal stability. By contrast, the θ′ phase rapidly coarsens in the Al–Cu–Li alloy in the absence of Sc and Si additions. The minor-alloyed Al–Cu–Li alloy has a tensile strength of ~154 MPa and elongation of 9.2% at 300°C. Therefore, the heat-resistance performance of Al–Cu–Li alloy with Sc and Si microalloying is enhanced at 200–300°C, exhibiting considerable progress in both high-temperature strength and specific strength compared with those of commercial heat-resistant 2618 and 2219 alloys.
doi_str_mv 10.1007/s40843-023-2664-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2889632599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889632599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-d1e2b840eff1d1e1d2d4aabb2099e21f4aa2a36c73a0829b07d1fc1661c18af53</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIVKUfwM0SZ4PXThz7WFU8KlVwKJwtJ7FbV2lS7BTUG__AH_ZLcBUkTlx2Z6WZ2dEgdA30Figt7mJGZcYJZZwwITJSnKERA6VIllM4T5iqnEjGxCWaxLihlILIAZQcoef5dhe6D9-u8NqaHgcbfexNW1ncOTxtjl_fs30aC49N03QH_On7Ne7XFpu69r3v2hNvWWHT1njpr9CFM020k989Rm8P96-zJ7J4eZzPpgtS8Vz1pAbLSplR6xwkDDWrM2PKMgVVloFLBzNcVAU3VDJV0qIGV4EQUIE0LudjdDP4pvDvext7ven2oU0vNZNSCc5ypRILBlYVuhiDdXoX_NaEgwaqT83poTmdmtOn5nSRNGzQxMRtVzb8Of8v-gEbH3GB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889632599</pqid></control><display><type>article</type><title>Improving heat resistance of Al–Cu–Li alloy with the addition of Sc and Si</title><source>SpringerLink (Online service)</source><source>Alma/SFX Local Collection</source><creator>Xue, Hao ; Li, Jiaming ; Wang, Zhiqi ; Bai, Junyuan ; Zhao, Zhihao ; Qin, Gaowu</creator><creatorcontrib>Xue, Hao ; Li, Jiaming ; Wang, Zhiqi ; Bai, Junyuan ; Zhao, Zhihao ; Qin, Gaowu</creatorcontrib><description>Al–Cu–Li alloys are important third-generation aluminum–lithium alloys in the aerospace field; however, they suffer from a service temperature below 100°C. In this work, we propose a new strategy for improving the heat resistance of Al–Cu–Li alloys at 200–300°C by promoting the nucleation of θ′ precipitates after dissolving T1 precipitates during thermal exposure with the minor addition of Sc and Si. During thermal exposure at 200–300°C, numerous nanoprecipitates of θ′ nucleate after dissolving some T1 precipitates in the minor-alloyed Al–Cu–Li alloy with Sc and Si, exhibiting high thermal stability. By contrast, the θ′ phase rapidly coarsens in the Al–Cu–Li alloy in the absence of Sc and Si additions. The minor-alloyed Al–Cu–Li alloy has a tensile strength of ~154 MPa and elongation of 9.2% at 300°C. Therefore, the heat-resistance performance of Al–Cu–Li alloy with Sc and Si microalloying is enhanced at 200–300°C, exhibiting considerable progress in both high-temperature strength and specific strength compared with those of commercial heat-resistant 2618 and 2219 alloys.</description><identifier>ISSN: 2095-8226</identifier><identifier>EISSN: 2199-4501</identifier><identifier>DOI: 10.1007/s40843-023-2664-7</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Alloys ; Aluminum base alloys ; Aluminum-lithium alloys ; Chemistry and Materials Science ; Chemistry/Food Science ; Elongation ; Heat resistance ; High temperature ; Materials Science ; Nucleation ; Precipitates ; Scandium ; Silicon ; Tensile strength ; Thermal resistance ; Thermal stability</subject><ispartof>Science China materials, 2023-11, Vol.66 (11), p.4285-4294</ispartof><rights>Science China Press 2023</rights><rights>Science China Press 2023.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-d1e2b840eff1d1e1d2d4aabb2099e21f4aa2a36c73a0829b07d1fc1661c18af53</citedby><cites>FETCH-LOGICAL-c359t-d1e2b840eff1d1e1d2d4aabb2099e21f4aa2a36c73a0829b07d1fc1661c18af53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40843-023-2664-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40843-023-2664-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Xue, Hao</creatorcontrib><creatorcontrib>Li, Jiaming</creatorcontrib><creatorcontrib>Wang, Zhiqi</creatorcontrib><creatorcontrib>Bai, Junyuan</creatorcontrib><creatorcontrib>Zhao, Zhihao</creatorcontrib><creatorcontrib>Qin, Gaowu</creatorcontrib><title>Improving heat resistance of Al–Cu–Li alloy with the addition of Sc and Si</title><title>Science China materials</title><addtitle>Sci. China Mater</addtitle><description>Al–Cu–Li alloys are important third-generation aluminum–lithium alloys in the aerospace field; however, they suffer from a service temperature below 100°C. In this work, we propose a new strategy for improving the heat resistance of Al–Cu–Li alloys at 200–300°C by promoting the nucleation of θ′ precipitates after dissolving T1 precipitates during thermal exposure with the minor addition of Sc and Si. During thermal exposure at 200–300°C, numerous nanoprecipitates of θ′ nucleate after dissolving some T1 precipitates in the minor-alloyed Al–Cu–Li alloy with Sc and Si, exhibiting high thermal stability. By contrast, the θ′ phase rapidly coarsens in the Al–Cu–Li alloy in the absence of Sc and Si additions. The minor-alloyed Al–Cu–Li alloy has a tensile strength of ~154 MPa and elongation of 9.2% at 300°C. Therefore, the heat-resistance performance of Al–Cu–Li alloy with Sc and Si microalloying is enhanced at 200–300°C, exhibiting considerable progress in both high-temperature strength and specific strength compared with those of commercial heat-resistant 2618 and 2219 alloys.</description><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Aluminum-lithium alloys</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Elongation</subject><subject>Heat resistance</subject><subject>High temperature</subject><subject>Materials Science</subject><subject>Nucleation</subject><subject>Precipitates</subject><subject>Scandium</subject><subject>Silicon</subject><subject>Tensile strength</subject><subject>Thermal resistance</subject><subject>Thermal stability</subject><issn>2095-8226</issn><issn>2199-4501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIVKUfwM0SZ4PXThz7WFU8KlVwKJwtJ7FbV2lS7BTUG__AH_ZLcBUkTlx2Z6WZ2dEgdA30Figt7mJGZcYJZZwwITJSnKERA6VIllM4T5iqnEjGxCWaxLihlILIAZQcoef5dhe6D9-u8NqaHgcbfexNW1ncOTxtjl_fs30aC49N03QH_On7Ne7XFpu69r3v2hNvWWHT1njpr9CFM020k989Rm8P96-zJ7J4eZzPpgtS8Vz1pAbLSplR6xwkDDWrM2PKMgVVloFLBzNcVAU3VDJV0qIGV4EQUIE0LudjdDP4pvDvext7ven2oU0vNZNSCc5ypRILBlYVuhiDdXoX_NaEgwaqT83poTmdmtOn5nSRNGzQxMRtVzb8Of8v-gEbH3GB</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Xue, Hao</creator><creator>Li, Jiaming</creator><creator>Wang, Zhiqi</creator><creator>Bai, Junyuan</creator><creator>Zhao, Zhihao</creator><creator>Qin, Gaowu</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231101</creationdate><title>Improving heat resistance of Al–Cu–Li alloy with the addition of Sc and Si</title><author>Xue, Hao ; Li, Jiaming ; Wang, Zhiqi ; Bai, Junyuan ; Zhao, Zhihao ; Qin, Gaowu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-d1e2b840eff1d1e1d2d4aabb2099e21f4aa2a36c73a0829b07d1fc1661c18af53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Aluminum-lithium alloys</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Elongation</topic><topic>Heat resistance</topic><topic>High temperature</topic><topic>Materials Science</topic><topic>Nucleation</topic><topic>Precipitates</topic><topic>Scandium</topic><topic>Silicon</topic><topic>Tensile strength</topic><topic>Thermal resistance</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Hao</creatorcontrib><creatorcontrib>Li, Jiaming</creatorcontrib><creatorcontrib>Wang, Zhiqi</creatorcontrib><creatorcontrib>Bai, Junyuan</creatorcontrib><creatorcontrib>Zhao, Zhihao</creatorcontrib><creatorcontrib>Qin, Gaowu</creatorcontrib><collection>CrossRef</collection><jtitle>Science China materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Hao</au><au>Li, Jiaming</au><au>Wang, Zhiqi</au><au>Bai, Junyuan</au><au>Zhao, Zhihao</au><au>Qin, Gaowu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving heat resistance of Al–Cu–Li alloy with the addition of Sc and Si</atitle><jtitle>Science China materials</jtitle><stitle>Sci. China Mater</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>66</volume><issue>11</issue><spage>4285</spage><epage>4294</epage><pages>4285-4294</pages><issn>2095-8226</issn><eissn>2199-4501</eissn><abstract>Al–Cu–Li alloys are important third-generation aluminum–lithium alloys in the aerospace field; however, they suffer from a service temperature below 100°C. In this work, we propose a new strategy for improving the heat resistance of Al–Cu–Li alloys at 200–300°C by promoting the nucleation of θ′ precipitates after dissolving T1 precipitates during thermal exposure with the minor addition of Sc and Si. During thermal exposure at 200–300°C, numerous nanoprecipitates of θ′ nucleate after dissolving some T1 precipitates in the minor-alloyed Al–Cu–Li alloy with Sc and Si, exhibiting high thermal stability. By contrast, the θ′ phase rapidly coarsens in the Al–Cu–Li alloy in the absence of Sc and Si additions. The minor-alloyed Al–Cu–Li alloy has a tensile strength of ~154 MPa and elongation of 9.2% at 300°C. Therefore, the heat-resistance performance of Al–Cu–Li alloy with Sc and Si microalloying is enhanced at 200–300°C, exhibiting considerable progress in both high-temperature strength and specific strength compared with those of commercial heat-resistant 2618 and 2219 alloys.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s40843-023-2664-7</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2095-8226
ispartof Science China materials, 2023-11, Vol.66 (11), p.4285-4294
issn 2095-8226
2199-4501
language eng
recordid cdi_proquest_journals_2889632599
source SpringerLink (Online service); Alma/SFX Local Collection
subjects Alloys
Aluminum base alloys
Aluminum-lithium alloys
Chemistry and Materials Science
Chemistry/Food Science
Elongation
Heat resistance
High temperature
Materials Science
Nucleation
Precipitates
Scandium
Silicon
Tensile strength
Thermal resistance
Thermal stability
title Improving heat resistance of Al–Cu–Li alloy with the addition of Sc and Si
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T09%3A59%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20heat%20resistance%20of%20Al%E2%80%93Cu%E2%80%93Li%20alloy%20with%20the%20addition%20of%20Sc%20and%20Si&rft.jtitle=Science%20China%20materials&rft.au=Xue,%20Hao&rft.date=2023-11-01&rft.volume=66&rft.issue=11&rft.spage=4285&rft.epage=4294&rft.pages=4285-4294&rft.issn=2095-8226&rft.eissn=2199-4501&rft_id=info:doi/10.1007/s40843-023-2664-7&rft_dat=%3Cproquest_cross%3E2889632599%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889632599&rft_id=info:pmid/&rfr_iscdi=true