Improving heat resistance of Al–Cu–Li alloy with the addition of Sc and Si
Al–Cu–Li alloys are important third-generation aluminum–lithium alloys in the aerospace field; however, they suffer from a service temperature below 100°C. In this work, we propose a new strategy for improving the heat resistance of Al–Cu–Li alloys at 200–300°C by promoting the nucleation of θ′ prec...
Gespeichert in:
Veröffentlicht in: | Science China materials 2023-11, Vol.66 (11), p.4285-4294 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4294 |
---|---|
container_issue | 11 |
container_start_page | 4285 |
container_title | Science China materials |
container_volume | 66 |
creator | Xue, Hao Li, Jiaming Wang, Zhiqi Bai, Junyuan Zhao, Zhihao Qin, Gaowu |
description | Al–Cu–Li alloys are important third-generation aluminum–lithium alloys in the aerospace field; however, they suffer from a service temperature below 100°C. In this work, we propose a new strategy for improving the heat resistance of Al–Cu–Li alloys at 200–300°C by promoting the nucleation of θ′ precipitates after dissolving T1 precipitates during thermal exposure with the minor addition of Sc and Si. During thermal exposure at 200–300°C, numerous nanoprecipitates of θ′ nucleate after dissolving some T1 precipitates in the minor-alloyed Al–Cu–Li alloy with Sc and Si, exhibiting high thermal stability. By contrast, the θ′ phase rapidly coarsens in the Al–Cu–Li alloy in the absence of Sc and Si additions. The minor-alloyed Al–Cu–Li alloy has a tensile strength of ~154 MPa and elongation of 9.2% at 300°C. Therefore, the heat-resistance performance of Al–Cu–Li alloy with Sc and Si microalloying is enhanced at 200–300°C, exhibiting considerable progress in both high-temperature strength and specific strength compared with those of commercial heat-resistant 2618 and 2219 alloys. |
doi_str_mv | 10.1007/s40843-023-2664-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2889632599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889632599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-d1e2b840eff1d1e1d2d4aabb2099e21f4aa2a36c73a0829b07d1fc1661c18af53</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIVKUfwM0SZ4PXThz7WFU8KlVwKJwtJ7FbV2lS7BTUG__AH_ZLcBUkTlx2Z6WZ2dEgdA30Figt7mJGZcYJZZwwITJSnKERA6VIllM4T5iqnEjGxCWaxLihlILIAZQcoef5dhe6D9-u8NqaHgcbfexNW1ncOTxtjl_fs30aC49N03QH_On7Ne7XFpu69r3v2hNvWWHT1njpr9CFM020k989Rm8P96-zJ7J4eZzPpgtS8Vz1pAbLSplR6xwkDDWrM2PKMgVVloFLBzNcVAU3VDJV0qIGV4EQUIE0LudjdDP4pvDvext7ven2oU0vNZNSCc5ypRILBlYVuhiDdXoX_NaEgwaqT83poTmdmtOn5nSRNGzQxMRtVzb8Of8v-gEbH3GB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889632599</pqid></control><display><type>article</type><title>Improving heat resistance of Al–Cu–Li alloy with the addition of Sc and Si</title><source>SpringerLink (Online service)</source><source>Alma/SFX Local Collection</source><creator>Xue, Hao ; Li, Jiaming ; Wang, Zhiqi ; Bai, Junyuan ; Zhao, Zhihao ; Qin, Gaowu</creator><creatorcontrib>Xue, Hao ; Li, Jiaming ; Wang, Zhiqi ; Bai, Junyuan ; Zhao, Zhihao ; Qin, Gaowu</creatorcontrib><description>Al–Cu–Li alloys are important third-generation aluminum–lithium alloys in the aerospace field; however, they suffer from a service temperature below 100°C. In this work, we propose a new strategy for improving the heat resistance of Al–Cu–Li alloys at 200–300°C by promoting the nucleation of θ′ precipitates after dissolving T1 precipitates during thermal exposure with the minor addition of Sc and Si. During thermal exposure at 200–300°C, numerous nanoprecipitates of θ′ nucleate after dissolving some T1 precipitates in the minor-alloyed Al–Cu–Li alloy with Sc and Si, exhibiting high thermal stability. By contrast, the θ′ phase rapidly coarsens in the Al–Cu–Li alloy in the absence of Sc and Si additions. The minor-alloyed Al–Cu–Li alloy has a tensile strength of ~154 MPa and elongation of 9.2% at 300°C. Therefore, the heat-resistance performance of Al–Cu–Li alloy with Sc and Si microalloying is enhanced at 200–300°C, exhibiting considerable progress in both high-temperature strength and specific strength compared with those of commercial heat-resistant 2618 and 2219 alloys.</description><identifier>ISSN: 2095-8226</identifier><identifier>EISSN: 2199-4501</identifier><identifier>DOI: 10.1007/s40843-023-2664-7</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Alloys ; Aluminum base alloys ; Aluminum-lithium alloys ; Chemistry and Materials Science ; Chemistry/Food Science ; Elongation ; Heat resistance ; High temperature ; Materials Science ; Nucleation ; Precipitates ; Scandium ; Silicon ; Tensile strength ; Thermal resistance ; Thermal stability</subject><ispartof>Science China materials, 2023-11, Vol.66 (11), p.4285-4294</ispartof><rights>Science China Press 2023</rights><rights>Science China Press 2023.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-d1e2b840eff1d1e1d2d4aabb2099e21f4aa2a36c73a0829b07d1fc1661c18af53</citedby><cites>FETCH-LOGICAL-c359t-d1e2b840eff1d1e1d2d4aabb2099e21f4aa2a36c73a0829b07d1fc1661c18af53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40843-023-2664-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40843-023-2664-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Xue, Hao</creatorcontrib><creatorcontrib>Li, Jiaming</creatorcontrib><creatorcontrib>Wang, Zhiqi</creatorcontrib><creatorcontrib>Bai, Junyuan</creatorcontrib><creatorcontrib>Zhao, Zhihao</creatorcontrib><creatorcontrib>Qin, Gaowu</creatorcontrib><title>Improving heat resistance of Al–Cu–Li alloy with the addition of Sc and Si</title><title>Science China materials</title><addtitle>Sci. China Mater</addtitle><description>Al–Cu–Li alloys are important third-generation aluminum–lithium alloys in the aerospace field; however, they suffer from a service temperature below 100°C. In this work, we propose a new strategy for improving the heat resistance of Al–Cu–Li alloys at 200–300°C by promoting the nucleation of θ′ precipitates after dissolving T1 precipitates during thermal exposure with the minor addition of Sc and Si. During thermal exposure at 200–300°C, numerous nanoprecipitates of θ′ nucleate after dissolving some T1 precipitates in the minor-alloyed Al–Cu–Li alloy with Sc and Si, exhibiting high thermal stability. By contrast, the θ′ phase rapidly coarsens in the Al–Cu–Li alloy in the absence of Sc and Si additions. The minor-alloyed Al–Cu–Li alloy has a tensile strength of ~154 MPa and elongation of 9.2% at 300°C. Therefore, the heat-resistance performance of Al–Cu–Li alloy with Sc and Si microalloying is enhanced at 200–300°C, exhibiting considerable progress in both high-temperature strength and specific strength compared with those of commercial heat-resistant 2618 and 2219 alloys.</description><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Aluminum-lithium alloys</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Elongation</subject><subject>Heat resistance</subject><subject>High temperature</subject><subject>Materials Science</subject><subject>Nucleation</subject><subject>Precipitates</subject><subject>Scandium</subject><subject>Silicon</subject><subject>Tensile strength</subject><subject>Thermal resistance</subject><subject>Thermal stability</subject><issn>2095-8226</issn><issn>2199-4501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIVKUfwM0SZ4PXThz7WFU8KlVwKJwtJ7FbV2lS7BTUG__AH_ZLcBUkTlx2Z6WZ2dEgdA30Figt7mJGZcYJZZwwITJSnKERA6VIllM4T5iqnEjGxCWaxLihlILIAZQcoef5dhe6D9-u8NqaHgcbfexNW1ncOTxtjl_fs30aC49N03QH_On7Ne7XFpu69r3v2hNvWWHT1njpr9CFM020k989Rm8P96-zJ7J4eZzPpgtS8Vz1pAbLSplR6xwkDDWrM2PKMgVVloFLBzNcVAU3VDJV0qIGV4EQUIE0LudjdDP4pvDvext7ven2oU0vNZNSCc5ypRILBlYVuhiDdXoX_NaEgwaqT83poTmdmtOn5nSRNGzQxMRtVzb8Of8v-gEbH3GB</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Xue, Hao</creator><creator>Li, Jiaming</creator><creator>Wang, Zhiqi</creator><creator>Bai, Junyuan</creator><creator>Zhao, Zhihao</creator><creator>Qin, Gaowu</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231101</creationdate><title>Improving heat resistance of Al–Cu–Li alloy with the addition of Sc and Si</title><author>Xue, Hao ; Li, Jiaming ; Wang, Zhiqi ; Bai, Junyuan ; Zhao, Zhihao ; Qin, Gaowu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-d1e2b840eff1d1e1d2d4aabb2099e21f4aa2a36c73a0829b07d1fc1661c18af53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Aluminum-lithium alloys</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Elongation</topic><topic>Heat resistance</topic><topic>High temperature</topic><topic>Materials Science</topic><topic>Nucleation</topic><topic>Precipitates</topic><topic>Scandium</topic><topic>Silicon</topic><topic>Tensile strength</topic><topic>Thermal resistance</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Hao</creatorcontrib><creatorcontrib>Li, Jiaming</creatorcontrib><creatorcontrib>Wang, Zhiqi</creatorcontrib><creatorcontrib>Bai, Junyuan</creatorcontrib><creatorcontrib>Zhao, Zhihao</creatorcontrib><creatorcontrib>Qin, Gaowu</creatorcontrib><collection>CrossRef</collection><jtitle>Science China materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Hao</au><au>Li, Jiaming</au><au>Wang, Zhiqi</au><au>Bai, Junyuan</au><au>Zhao, Zhihao</au><au>Qin, Gaowu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving heat resistance of Al–Cu–Li alloy with the addition of Sc and Si</atitle><jtitle>Science China materials</jtitle><stitle>Sci. China Mater</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>66</volume><issue>11</issue><spage>4285</spage><epage>4294</epage><pages>4285-4294</pages><issn>2095-8226</issn><eissn>2199-4501</eissn><abstract>Al–Cu–Li alloys are important third-generation aluminum–lithium alloys in the aerospace field; however, they suffer from a service temperature below 100°C. In this work, we propose a new strategy for improving the heat resistance of Al–Cu–Li alloys at 200–300°C by promoting the nucleation of θ′ precipitates after dissolving T1 precipitates during thermal exposure with the minor addition of Sc and Si. During thermal exposure at 200–300°C, numerous nanoprecipitates of θ′ nucleate after dissolving some T1 precipitates in the minor-alloyed Al–Cu–Li alloy with Sc and Si, exhibiting high thermal stability. By contrast, the θ′ phase rapidly coarsens in the Al–Cu–Li alloy in the absence of Sc and Si additions. The minor-alloyed Al–Cu–Li alloy has a tensile strength of ~154 MPa and elongation of 9.2% at 300°C. Therefore, the heat-resistance performance of Al–Cu–Li alloy with Sc and Si microalloying is enhanced at 200–300°C, exhibiting considerable progress in both high-temperature strength and specific strength compared with those of commercial heat-resistant 2618 and 2219 alloys.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s40843-023-2664-7</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-8226 |
ispartof | Science China materials, 2023-11, Vol.66 (11), p.4285-4294 |
issn | 2095-8226 2199-4501 |
language | eng |
recordid | cdi_proquest_journals_2889632599 |
source | SpringerLink (Online service); Alma/SFX Local Collection |
subjects | Alloys Aluminum base alloys Aluminum-lithium alloys Chemistry and Materials Science Chemistry/Food Science Elongation Heat resistance High temperature Materials Science Nucleation Precipitates Scandium Silicon Tensile strength Thermal resistance Thermal stability |
title | Improving heat resistance of Al–Cu–Li alloy with the addition of Sc and Si |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T09%3A59%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20heat%20resistance%20of%20Al%E2%80%93Cu%E2%80%93Li%20alloy%20with%20the%20addition%20of%20Sc%20and%20Si&rft.jtitle=Science%20China%20materials&rft.au=Xue,%20Hao&rft.date=2023-11-01&rft.volume=66&rft.issue=11&rft.spage=4285&rft.epage=4294&rft.pages=4285-4294&rft.issn=2095-8226&rft.eissn=2199-4501&rft_id=info:doi/10.1007/s40843-023-2664-7&rft_dat=%3Cproquest_cross%3E2889632599%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889632599&rft_id=info:pmid/&rfr_iscdi=true |