Revealing interface-assisted plastic anisotropy via in situ transmission electron microscopy tension of lamellar TiAl

Assembling functional units into specific orientation organizations based on functional unit and organization (FUO) paradigm can maximize utilizing mechanical property anisotropy of lamellar-structured materials. However, the origin of their anisotropic deformation behaviors has not been clearly und...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China materials 2023-11, Vol.66 (11), p.4275-4284
Hauptverfasser: Qi, Zhixiang, Zhu, Qi, Wang, Jian, Cao, Yuede, Chen, Fengrui, Wang, Jiangwei, Chen, Yang, Zheng, Gong, Chen, Guang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4284
container_issue 11
container_start_page 4275
container_title Science China materials
container_volume 66
creator Qi, Zhixiang
Zhu, Qi
Wang, Jian
Cao, Yuede
Chen, Fengrui
Wang, Jiangwei
Chen, Yang
Zheng, Gong
Chen, Guang
description Assembling functional units into specific orientation organizations based on functional unit and organization (FUO) paradigm can maximize utilizing mechanical property anisotropy of lamellar-structured materials. However, the origin of their anisotropic deformation behaviors has not been clearly understood. Taking the fully lamellar γ-TiAl/α 2 -Ti 3 Al dual-phase single crystal as an example, we decouple the interface functional units governed anisotropic plastic deformation through in situ transmission electron microscopy tensile testing and multiscale microstructural characterizations. The orientation organization-dependent slip continuity across the γ/α 2 interface and interface strength play a determinant role in plastic anisotropy beyond intrinsic dislocation activities within the lamellae. Consequently, translamellar stress transfer or interface delamination prevails under the tension parallel or perpendicular to the lamella, elaborating the strong anisotropy in strength and ductility. These mechanistic insights hold general implications to understanding the anisotropic plastic deformation of lamellar-structured materials, benefiting the structural design of high-performance alloys.
doi_str_mv 10.1007/s40843-023-2661-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2889631887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889631887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-abef6cf7b55b7ac31083daa730c070f79f17308ddba5912f5becdcde2dbdc62a3</originalsourceid><addsrcrecordid>eNp1kEtrwzAQhE1poaHND-hN0LNaPWJbOobQFwQKJT2LtSwFBVt2JTmQf1-lLvTU0w7sN7PLFMUdJQ-UkPoxrohYcUwYx6yqKOYXxYJRKfGqJPQyayJLLBirrotljAdCCK1KSqVYFNOHORronN8j55MJFrTBEKOLybRo7CAmpxF4F4cUhvGEjg4yiaJLE0oBfOxdpgePTGd0RjzqnQ5D1Gc4Gf-zGyzqoDddBwHt3Lq7La4sdNEsf-dN8fn8tNu84u37y9tmvcWalzJhaIyttK2bsmxq0JwSwVuAmhNNamJraWnWom0bKCVltmyMbnVrWNu0umLAb4r7OXcMw9dkYlKHYQo-n1RMCFlxKkSdKTpT579jMFaNwfUQTooSdS5YzQWrXLA6F6x49rDZEzPr9yb8Jf9v-gYkN4G-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889631887</pqid></control><display><type>article</type><title>Revealing interface-assisted plastic anisotropy via in situ transmission electron microscopy tension of lamellar TiAl</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Qi, Zhixiang ; Zhu, Qi ; Wang, Jian ; Cao, Yuede ; Chen, Fengrui ; Wang, Jiangwei ; Chen, Yang ; Zheng, Gong ; Chen, Guang</creator><creatorcontrib>Qi, Zhixiang ; Zhu, Qi ; Wang, Jian ; Cao, Yuede ; Chen, Fengrui ; Wang, Jiangwei ; Chen, Yang ; Zheng, Gong ; Chen, Guang</creatorcontrib><description>Assembling functional units into specific orientation organizations based on functional unit and organization (FUO) paradigm can maximize utilizing mechanical property anisotropy of lamellar-structured materials. However, the origin of their anisotropic deformation behaviors has not been clearly understood. Taking the fully lamellar γ-TiAl/α 2 -Ti 3 Al dual-phase single crystal as an example, we decouple the interface functional units governed anisotropic plastic deformation through in situ transmission electron microscopy tensile testing and multiscale microstructural characterizations. The orientation organization-dependent slip continuity across the γ/α 2 interface and interface strength play a determinant role in plastic anisotropy beyond intrinsic dislocation activities within the lamellae. Consequently, translamellar stress transfer or interface delamination prevails under the tension parallel or perpendicular to the lamella, elaborating the strong anisotropy in strength and ductility. These mechanistic insights hold general implications to understanding the anisotropic plastic deformation of lamellar-structured materials, benefiting the structural design of high-performance alloys.</description><identifier>ISSN: 2095-8226</identifier><identifier>EISSN: 2199-4501</identifier><identifier>DOI: 10.1007/s40843-023-2661-3</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Chemistry and Materials Science ; Chemistry/Food Science ; Interfacial strength ; Intermetallic compounds ; Lamella ; Lamellar structure ; Materials Science ; Plastic anisotropy ; Plastic deformation ; Single crystals ; Stress transfer ; Structural design ; Superalloys ; Tensile tests ; Titanium aluminides ; Titanium base alloys ; Transmission electron microscopy</subject><ispartof>Science China materials, 2023-11, Vol.66 (11), p.4275-4284</ispartof><rights>Science China Press 2023</rights><rights>Science China Press 2023.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-abef6cf7b55b7ac31083daa730c070f79f17308ddba5912f5becdcde2dbdc62a3</citedby><cites>FETCH-LOGICAL-c359t-abef6cf7b55b7ac31083daa730c070f79f17308ddba5912f5becdcde2dbdc62a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40843-023-2661-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40843-023-2661-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Qi, Zhixiang</creatorcontrib><creatorcontrib>Zhu, Qi</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Cao, Yuede</creatorcontrib><creatorcontrib>Chen, Fengrui</creatorcontrib><creatorcontrib>Wang, Jiangwei</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Zheng, Gong</creatorcontrib><creatorcontrib>Chen, Guang</creatorcontrib><title>Revealing interface-assisted plastic anisotropy via in situ transmission electron microscopy tension of lamellar TiAl</title><title>Science China materials</title><addtitle>Sci. China Mater</addtitle><description>Assembling functional units into specific orientation organizations based on functional unit and organization (FUO) paradigm can maximize utilizing mechanical property anisotropy of lamellar-structured materials. However, the origin of their anisotropic deformation behaviors has not been clearly understood. Taking the fully lamellar γ-TiAl/α 2 -Ti 3 Al dual-phase single crystal as an example, we decouple the interface functional units governed anisotropic plastic deformation through in situ transmission electron microscopy tensile testing and multiscale microstructural characterizations. The orientation organization-dependent slip continuity across the γ/α 2 interface and interface strength play a determinant role in plastic anisotropy beyond intrinsic dislocation activities within the lamellae. Consequently, translamellar stress transfer or interface delamination prevails under the tension parallel or perpendicular to the lamella, elaborating the strong anisotropy in strength and ductility. These mechanistic insights hold general implications to understanding the anisotropic plastic deformation of lamellar-structured materials, benefiting the structural design of high-performance alloys.</description><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Interfacial strength</subject><subject>Intermetallic compounds</subject><subject>Lamella</subject><subject>Lamellar structure</subject><subject>Materials Science</subject><subject>Plastic anisotropy</subject><subject>Plastic deformation</subject><subject>Single crystals</subject><subject>Stress transfer</subject><subject>Structural design</subject><subject>Superalloys</subject><subject>Tensile tests</subject><subject>Titanium aluminides</subject><subject>Titanium base alloys</subject><subject>Transmission electron microscopy</subject><issn>2095-8226</issn><issn>2199-4501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEtrwzAQhE1poaHND-hN0LNaPWJbOobQFwQKJT2LtSwFBVt2JTmQf1-lLvTU0w7sN7PLFMUdJQ-UkPoxrohYcUwYx6yqKOYXxYJRKfGqJPQyayJLLBirrotljAdCCK1KSqVYFNOHORronN8j55MJFrTBEKOLybRo7CAmpxF4F4cUhvGEjg4yiaJLE0oBfOxdpgePTGd0RjzqnQ5D1Gc4Gf-zGyzqoDddBwHt3Lq7La4sdNEsf-dN8fn8tNu84u37y9tmvcWalzJhaIyttK2bsmxq0JwSwVuAmhNNamJraWnWom0bKCVltmyMbnVrWNu0umLAb4r7OXcMw9dkYlKHYQo-n1RMCFlxKkSdKTpT579jMFaNwfUQTooSdS5YzQWrXLA6F6x49rDZEzPr9yb8Jf9v-gYkN4G-</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Qi, Zhixiang</creator><creator>Zhu, Qi</creator><creator>Wang, Jian</creator><creator>Cao, Yuede</creator><creator>Chen, Fengrui</creator><creator>Wang, Jiangwei</creator><creator>Chen, Yang</creator><creator>Zheng, Gong</creator><creator>Chen, Guang</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231101</creationdate><title>Revealing interface-assisted plastic anisotropy via in situ transmission electron microscopy tension of lamellar TiAl</title><author>Qi, Zhixiang ; Zhu, Qi ; Wang, Jian ; Cao, Yuede ; Chen, Fengrui ; Wang, Jiangwei ; Chen, Yang ; Zheng, Gong ; Chen, Guang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-abef6cf7b55b7ac31083daa730c070f79f17308ddba5912f5becdcde2dbdc62a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Interfacial strength</topic><topic>Intermetallic compounds</topic><topic>Lamella</topic><topic>Lamellar structure</topic><topic>Materials Science</topic><topic>Plastic anisotropy</topic><topic>Plastic deformation</topic><topic>Single crystals</topic><topic>Stress transfer</topic><topic>Structural design</topic><topic>Superalloys</topic><topic>Tensile tests</topic><topic>Titanium aluminides</topic><topic>Titanium base alloys</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Zhixiang</creatorcontrib><creatorcontrib>Zhu, Qi</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Cao, Yuede</creatorcontrib><creatorcontrib>Chen, Fengrui</creatorcontrib><creatorcontrib>Wang, Jiangwei</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Zheng, Gong</creatorcontrib><creatorcontrib>Chen, Guang</creatorcontrib><collection>CrossRef</collection><jtitle>Science China materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Zhixiang</au><au>Zhu, Qi</au><au>Wang, Jian</au><au>Cao, Yuede</au><au>Chen, Fengrui</au><au>Wang, Jiangwei</au><au>Chen, Yang</au><au>Zheng, Gong</au><au>Chen, Guang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing interface-assisted plastic anisotropy via in situ transmission electron microscopy tension of lamellar TiAl</atitle><jtitle>Science China materials</jtitle><stitle>Sci. China Mater</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>66</volume><issue>11</issue><spage>4275</spage><epage>4284</epage><pages>4275-4284</pages><issn>2095-8226</issn><eissn>2199-4501</eissn><abstract>Assembling functional units into specific orientation organizations based on functional unit and organization (FUO) paradigm can maximize utilizing mechanical property anisotropy of lamellar-structured materials. However, the origin of their anisotropic deformation behaviors has not been clearly understood. Taking the fully lamellar γ-TiAl/α 2 -Ti 3 Al dual-phase single crystal as an example, we decouple the interface functional units governed anisotropic plastic deformation through in situ transmission electron microscopy tensile testing and multiscale microstructural characterizations. The orientation organization-dependent slip continuity across the γ/α 2 interface and interface strength play a determinant role in plastic anisotropy beyond intrinsic dislocation activities within the lamellae. Consequently, translamellar stress transfer or interface delamination prevails under the tension parallel or perpendicular to the lamella, elaborating the strong anisotropy in strength and ductility. These mechanistic insights hold general implications to understanding the anisotropic plastic deformation of lamellar-structured materials, benefiting the structural design of high-performance alloys.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s40843-023-2661-3</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2095-8226
ispartof Science China materials, 2023-11, Vol.66 (11), p.4275-4284
issn 2095-8226
2199-4501
language eng
recordid cdi_proquest_journals_2889631887
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Chemistry and Materials Science
Chemistry/Food Science
Interfacial strength
Intermetallic compounds
Lamella
Lamellar structure
Materials Science
Plastic anisotropy
Plastic deformation
Single crystals
Stress transfer
Structural design
Superalloys
Tensile tests
Titanium aluminides
Titanium base alloys
Transmission electron microscopy
title Revealing interface-assisted plastic anisotropy via in situ transmission electron microscopy tension of lamellar TiAl
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A45%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20interface-assisted%20plastic%20anisotropy%20via%20in%20situ%20transmission%20electron%20microscopy%20tension%20of%20lamellar%20TiAl&rft.jtitle=Science%20China%20materials&rft.au=Qi,%20Zhixiang&rft.date=2023-11-01&rft.volume=66&rft.issue=11&rft.spage=4275&rft.epage=4284&rft.pages=4275-4284&rft.issn=2095-8226&rft.eissn=2199-4501&rft_id=info:doi/10.1007/s40843-023-2661-3&rft_dat=%3Cproquest_cross%3E2889631887%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889631887&rft_id=info:pmid/&rfr_iscdi=true