Revealing interface-assisted plastic anisotropy via in situ transmission electron microscopy tension of lamellar TiAl
Assembling functional units into specific orientation organizations based on functional unit and organization (FUO) paradigm can maximize utilizing mechanical property anisotropy of lamellar-structured materials. However, the origin of their anisotropic deformation behaviors has not been clearly und...
Gespeichert in:
Veröffentlicht in: | Science China materials 2023-11, Vol.66 (11), p.4275-4284 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4284 |
---|---|
container_issue | 11 |
container_start_page | 4275 |
container_title | Science China materials |
container_volume | 66 |
creator | Qi, Zhixiang Zhu, Qi Wang, Jian Cao, Yuede Chen, Fengrui Wang, Jiangwei Chen, Yang Zheng, Gong Chen, Guang |
description | Assembling functional units into specific orientation organizations based on functional unit and organization (FUO) paradigm can maximize utilizing mechanical property anisotropy of lamellar-structured materials. However, the origin of their anisotropic deformation behaviors has not been clearly understood. Taking the fully lamellar γ-TiAl/α
2
-Ti
3
Al dual-phase single crystal as an example, we decouple the interface functional units governed anisotropic plastic deformation through
in situ
transmission electron microscopy tensile testing and multiscale microstructural characterizations. The orientation organization-dependent slip continuity across the γ/α
2
interface and interface strength play a determinant role in plastic anisotropy beyond intrinsic dislocation activities within the lamellae. Consequently, translamellar stress transfer or interface delamination prevails under the tension parallel or perpendicular to the lamella, elaborating the strong anisotropy in strength and ductility. These mechanistic insights hold general implications to understanding the anisotropic plastic deformation of lamellar-structured materials, benefiting the structural design of high-performance alloys. |
doi_str_mv | 10.1007/s40843-023-2661-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2889631887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889631887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-abef6cf7b55b7ac31083daa730c070f79f17308ddba5912f5becdcde2dbdc62a3</originalsourceid><addsrcrecordid>eNp1kEtrwzAQhE1poaHND-hN0LNaPWJbOobQFwQKJT2LtSwFBVt2JTmQf1-lLvTU0w7sN7PLFMUdJQ-UkPoxrohYcUwYx6yqKOYXxYJRKfGqJPQyayJLLBirrotljAdCCK1KSqVYFNOHORronN8j55MJFrTBEKOLybRo7CAmpxF4F4cUhvGEjg4yiaJLE0oBfOxdpgePTGd0RjzqnQ5D1Gc4Gf-zGyzqoDddBwHt3Lq7La4sdNEsf-dN8fn8tNu84u37y9tmvcWalzJhaIyttK2bsmxq0JwSwVuAmhNNamJraWnWom0bKCVltmyMbnVrWNu0umLAb4r7OXcMw9dkYlKHYQo-n1RMCFlxKkSdKTpT579jMFaNwfUQTooSdS5YzQWrXLA6F6x49rDZEzPr9yb8Jf9v-gYkN4G-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889631887</pqid></control><display><type>article</type><title>Revealing interface-assisted plastic anisotropy via in situ transmission electron microscopy tension of lamellar TiAl</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Qi, Zhixiang ; Zhu, Qi ; Wang, Jian ; Cao, Yuede ; Chen, Fengrui ; Wang, Jiangwei ; Chen, Yang ; Zheng, Gong ; Chen, Guang</creator><creatorcontrib>Qi, Zhixiang ; Zhu, Qi ; Wang, Jian ; Cao, Yuede ; Chen, Fengrui ; Wang, Jiangwei ; Chen, Yang ; Zheng, Gong ; Chen, Guang</creatorcontrib><description>Assembling functional units into specific orientation organizations based on functional unit and organization (FUO) paradigm can maximize utilizing mechanical property anisotropy of lamellar-structured materials. However, the origin of their anisotropic deformation behaviors has not been clearly understood. Taking the fully lamellar γ-TiAl/α
2
-Ti
3
Al dual-phase single crystal as an example, we decouple the interface functional units governed anisotropic plastic deformation through
in situ
transmission electron microscopy tensile testing and multiscale microstructural characterizations. The orientation organization-dependent slip continuity across the γ/α
2
interface and interface strength play a determinant role in plastic anisotropy beyond intrinsic dislocation activities within the lamellae. Consequently, translamellar stress transfer or interface delamination prevails under the tension parallel or perpendicular to the lamella, elaborating the strong anisotropy in strength and ductility. These mechanistic insights hold general implications to understanding the anisotropic plastic deformation of lamellar-structured materials, benefiting the structural design of high-performance alloys.</description><identifier>ISSN: 2095-8226</identifier><identifier>EISSN: 2199-4501</identifier><identifier>DOI: 10.1007/s40843-023-2661-3</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Chemistry and Materials Science ; Chemistry/Food Science ; Interfacial strength ; Intermetallic compounds ; Lamella ; Lamellar structure ; Materials Science ; Plastic anisotropy ; Plastic deformation ; Single crystals ; Stress transfer ; Structural design ; Superalloys ; Tensile tests ; Titanium aluminides ; Titanium base alloys ; Transmission electron microscopy</subject><ispartof>Science China materials, 2023-11, Vol.66 (11), p.4275-4284</ispartof><rights>Science China Press 2023</rights><rights>Science China Press 2023.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-abef6cf7b55b7ac31083daa730c070f79f17308ddba5912f5becdcde2dbdc62a3</citedby><cites>FETCH-LOGICAL-c359t-abef6cf7b55b7ac31083daa730c070f79f17308ddba5912f5becdcde2dbdc62a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40843-023-2661-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40843-023-2661-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Qi, Zhixiang</creatorcontrib><creatorcontrib>Zhu, Qi</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Cao, Yuede</creatorcontrib><creatorcontrib>Chen, Fengrui</creatorcontrib><creatorcontrib>Wang, Jiangwei</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Zheng, Gong</creatorcontrib><creatorcontrib>Chen, Guang</creatorcontrib><title>Revealing interface-assisted plastic anisotropy via in situ transmission electron microscopy tension of lamellar TiAl</title><title>Science China materials</title><addtitle>Sci. China Mater</addtitle><description>Assembling functional units into specific orientation organizations based on functional unit and organization (FUO) paradigm can maximize utilizing mechanical property anisotropy of lamellar-structured materials. However, the origin of their anisotropic deformation behaviors has not been clearly understood. Taking the fully lamellar γ-TiAl/α
2
-Ti
3
Al dual-phase single crystal as an example, we decouple the interface functional units governed anisotropic plastic deformation through
in situ
transmission electron microscopy tensile testing and multiscale microstructural characterizations. The orientation organization-dependent slip continuity across the γ/α
2
interface and interface strength play a determinant role in plastic anisotropy beyond intrinsic dislocation activities within the lamellae. Consequently, translamellar stress transfer or interface delamination prevails under the tension parallel or perpendicular to the lamella, elaborating the strong anisotropy in strength and ductility. These mechanistic insights hold general implications to understanding the anisotropic plastic deformation of lamellar-structured materials, benefiting the structural design of high-performance alloys.</description><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Interfacial strength</subject><subject>Intermetallic compounds</subject><subject>Lamella</subject><subject>Lamellar structure</subject><subject>Materials Science</subject><subject>Plastic anisotropy</subject><subject>Plastic deformation</subject><subject>Single crystals</subject><subject>Stress transfer</subject><subject>Structural design</subject><subject>Superalloys</subject><subject>Tensile tests</subject><subject>Titanium aluminides</subject><subject>Titanium base alloys</subject><subject>Transmission electron microscopy</subject><issn>2095-8226</issn><issn>2199-4501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEtrwzAQhE1poaHND-hN0LNaPWJbOobQFwQKJT2LtSwFBVt2JTmQf1-lLvTU0w7sN7PLFMUdJQ-UkPoxrohYcUwYx6yqKOYXxYJRKfGqJPQyayJLLBirrotljAdCCK1KSqVYFNOHORronN8j55MJFrTBEKOLybRo7CAmpxF4F4cUhvGEjg4yiaJLE0oBfOxdpgePTGd0RjzqnQ5D1Gc4Gf-zGyzqoDddBwHt3Lq7La4sdNEsf-dN8fn8tNu84u37y9tmvcWalzJhaIyttK2bsmxq0JwSwVuAmhNNamJraWnWom0bKCVltmyMbnVrWNu0umLAb4r7OXcMw9dkYlKHYQo-n1RMCFlxKkSdKTpT579jMFaNwfUQTooSdS5YzQWrXLA6F6x49rDZEzPr9yb8Jf9v-gYkN4G-</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Qi, Zhixiang</creator><creator>Zhu, Qi</creator><creator>Wang, Jian</creator><creator>Cao, Yuede</creator><creator>Chen, Fengrui</creator><creator>Wang, Jiangwei</creator><creator>Chen, Yang</creator><creator>Zheng, Gong</creator><creator>Chen, Guang</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231101</creationdate><title>Revealing interface-assisted plastic anisotropy via in situ transmission electron microscopy tension of lamellar TiAl</title><author>Qi, Zhixiang ; Zhu, Qi ; Wang, Jian ; Cao, Yuede ; Chen, Fengrui ; Wang, Jiangwei ; Chen, Yang ; Zheng, Gong ; Chen, Guang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-abef6cf7b55b7ac31083daa730c070f79f17308ddba5912f5becdcde2dbdc62a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Interfacial strength</topic><topic>Intermetallic compounds</topic><topic>Lamella</topic><topic>Lamellar structure</topic><topic>Materials Science</topic><topic>Plastic anisotropy</topic><topic>Plastic deformation</topic><topic>Single crystals</topic><topic>Stress transfer</topic><topic>Structural design</topic><topic>Superalloys</topic><topic>Tensile tests</topic><topic>Titanium aluminides</topic><topic>Titanium base alloys</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Zhixiang</creatorcontrib><creatorcontrib>Zhu, Qi</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Cao, Yuede</creatorcontrib><creatorcontrib>Chen, Fengrui</creatorcontrib><creatorcontrib>Wang, Jiangwei</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Zheng, Gong</creatorcontrib><creatorcontrib>Chen, Guang</creatorcontrib><collection>CrossRef</collection><jtitle>Science China materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Zhixiang</au><au>Zhu, Qi</au><au>Wang, Jian</au><au>Cao, Yuede</au><au>Chen, Fengrui</au><au>Wang, Jiangwei</au><au>Chen, Yang</au><au>Zheng, Gong</au><au>Chen, Guang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing interface-assisted plastic anisotropy via in situ transmission electron microscopy tension of lamellar TiAl</atitle><jtitle>Science China materials</jtitle><stitle>Sci. China Mater</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>66</volume><issue>11</issue><spage>4275</spage><epage>4284</epage><pages>4275-4284</pages><issn>2095-8226</issn><eissn>2199-4501</eissn><abstract>Assembling functional units into specific orientation organizations based on functional unit and organization (FUO) paradigm can maximize utilizing mechanical property anisotropy of lamellar-structured materials. However, the origin of their anisotropic deformation behaviors has not been clearly understood. Taking the fully lamellar γ-TiAl/α
2
-Ti
3
Al dual-phase single crystal as an example, we decouple the interface functional units governed anisotropic plastic deformation through
in situ
transmission electron microscopy tensile testing and multiscale microstructural characterizations. The orientation organization-dependent slip continuity across the γ/α
2
interface and interface strength play a determinant role in plastic anisotropy beyond intrinsic dislocation activities within the lamellae. Consequently, translamellar stress transfer or interface delamination prevails under the tension parallel or perpendicular to the lamella, elaborating the strong anisotropy in strength and ductility. These mechanistic insights hold general implications to understanding the anisotropic plastic deformation of lamellar-structured materials, benefiting the structural design of high-performance alloys.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s40843-023-2661-3</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-8226 |
ispartof | Science China materials, 2023-11, Vol.66 (11), p.4275-4284 |
issn | 2095-8226 2199-4501 |
language | eng |
recordid | cdi_proquest_journals_2889631887 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Chemistry and Materials Science Chemistry/Food Science Interfacial strength Intermetallic compounds Lamella Lamellar structure Materials Science Plastic anisotropy Plastic deformation Single crystals Stress transfer Structural design Superalloys Tensile tests Titanium aluminides Titanium base alloys Transmission electron microscopy |
title | Revealing interface-assisted plastic anisotropy via in situ transmission electron microscopy tension of lamellar TiAl |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A45%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20interface-assisted%20plastic%20anisotropy%20via%20in%20situ%20transmission%20electron%20microscopy%20tension%20of%20lamellar%20TiAl&rft.jtitle=Science%20China%20materials&rft.au=Qi,%20Zhixiang&rft.date=2023-11-01&rft.volume=66&rft.issue=11&rft.spage=4275&rft.epage=4284&rft.pages=4275-4284&rft.issn=2095-8226&rft.eissn=2199-4501&rft_id=info:doi/10.1007/s40843-023-2661-3&rft_dat=%3Cproquest_cross%3E2889631887%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889631887&rft_id=info:pmid/&rfr_iscdi=true |