Transformer-based Model for Oral Epithelial Dysplasia Segmentation

Oral epithelial dysplasia (OED) is a premalignant histopathological diagnosis given to lesions of the oral cavity. OED grading is subject to large inter/intra-rater variability, resulting in the under/over-treatment of patients. We developed a new Transformer-based pipeline to improve detection and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-11
Hauptverfasser: Shephard, Adam J, Mahmood, Hanya, Ahmed Raza, Shan E, Anna Luiza Damaceno Araujo, Santos-Silva, Alan Roger, Lopes, Marcio Ajudarte, Vargas, Pablo Agustin, McCombe, Kris, Craig, Stephanie, James, Jacqueline, Brooks, Jill, Nankivell, Paul, Mehanna, Hisham, Syed Ali Khurram, Rajpoot, Nasir M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Shephard, Adam J
Mahmood, Hanya
Ahmed Raza, Shan E
Anna Luiza Damaceno Araujo
Santos-Silva, Alan Roger
Lopes, Marcio Ajudarte
Vargas, Pablo Agustin
McCombe, Kris
Craig, Stephanie
James, Jacqueline
Brooks, Jill
Nankivell, Paul
Mehanna, Hisham
Syed Ali Khurram
Rajpoot, Nasir M
description Oral epithelial dysplasia (OED) is a premalignant histopathological diagnosis given to lesions of the oral cavity. OED grading is subject to large inter/intra-rater variability, resulting in the under/over-treatment of patients. We developed a new Transformer-based pipeline to improve detection and segmentation of OED in haematoxylin and eosin (H&E) stained whole slide images (WSIs). Our model was trained on OED cases (n = 260) and controls (n = 105) collected using three different scanners, and validated on test data from three external centres in the United Kingdom and Brazil (n = 78). Our internal experiments yield a mean F1-score of 0.81 for OED segmentation, which reduced slightly to 0.71 on external testing, showing good generalisability, and gaining state-of-the-art results. This is the first externally validated study to use Transformers for segmentation in precancerous histology images. Our publicly available model shows great promise to be the first step of a fully-integrated pipeline, allowing earlier and more efficient OED diagnosis, ultimately benefiting patient outcomes.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2888470808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2888470808</sourcerecordid><originalsourceid>FETCH-proquest_journals_28884708083</originalsourceid><addsrcrecordid>eNqNirEOgjAURRsTE4nyD02cSWoL0lnFuBgH2ckzPLSktNhXBv9eBj_A6Z6ccxcskUrtMp1LuWIpUS-EkPtSFoVK2KEO4KjzYcCQPYCw5VffouWz4rcAllejiS-0ZsbTh0YLZIDf8TmgixCNdxu27MASpr9ds-25qo-XbAz-PSHFpvdTcHNqpNY6L4UWWv33-gLMEzoP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2888470808</pqid></control><display><type>article</type><title>Transformer-based Model for Oral Epithelial Dysplasia Segmentation</title><source>Free E- Journals</source><creator>Shephard, Adam J ; Mahmood, Hanya ; Ahmed Raza, Shan E ; Anna Luiza Damaceno Araujo ; Santos-Silva, Alan Roger ; Lopes, Marcio Ajudarte ; Vargas, Pablo Agustin ; McCombe, Kris ; Craig, Stephanie ; James, Jacqueline ; Brooks, Jill ; Nankivell, Paul ; Mehanna, Hisham ; Syed Ali Khurram ; Rajpoot, Nasir M</creator><creatorcontrib>Shephard, Adam J ; Mahmood, Hanya ; Ahmed Raza, Shan E ; Anna Luiza Damaceno Araujo ; Santos-Silva, Alan Roger ; Lopes, Marcio Ajudarte ; Vargas, Pablo Agustin ; McCombe, Kris ; Craig, Stephanie ; James, Jacqueline ; Brooks, Jill ; Nankivell, Paul ; Mehanna, Hisham ; Syed Ali Khurram ; Rajpoot, Nasir M</creatorcontrib><description>Oral epithelial dysplasia (OED) is a premalignant histopathological diagnosis given to lesions of the oral cavity. OED grading is subject to large inter/intra-rater variability, resulting in the under/over-treatment of patients. We developed a new Transformer-based pipeline to improve detection and segmentation of OED in haematoxylin and eosin (H&amp;E) stained whole slide images (WSIs). Our model was trained on OED cases (n = 260) and controls (n = 105) collected using three different scanners, and validated on test data from three external centres in the United Kingdom and Brazil (n = 78). Our internal experiments yield a mean F1-score of 0.81 for OED segmentation, which reduced slightly to 0.71 on external testing, showing good generalisability, and gaining state-of-the-art results. This is the first externally validated study to use Transformers for segmentation in precancerous histology images. Our publicly available model shows great promise to be the first step of a fully-integrated pipeline, allowing earlier and more efficient OED diagnosis, ultimately benefiting patient outcomes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Diagnosis ; Histology ; Image segmentation ; Medical imaging ; Transformers</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Shephard, Adam J</creatorcontrib><creatorcontrib>Mahmood, Hanya</creatorcontrib><creatorcontrib>Ahmed Raza, Shan E</creatorcontrib><creatorcontrib>Anna Luiza Damaceno Araujo</creatorcontrib><creatorcontrib>Santos-Silva, Alan Roger</creatorcontrib><creatorcontrib>Lopes, Marcio Ajudarte</creatorcontrib><creatorcontrib>Vargas, Pablo Agustin</creatorcontrib><creatorcontrib>McCombe, Kris</creatorcontrib><creatorcontrib>Craig, Stephanie</creatorcontrib><creatorcontrib>James, Jacqueline</creatorcontrib><creatorcontrib>Brooks, Jill</creatorcontrib><creatorcontrib>Nankivell, Paul</creatorcontrib><creatorcontrib>Mehanna, Hisham</creatorcontrib><creatorcontrib>Syed Ali Khurram</creatorcontrib><creatorcontrib>Rajpoot, Nasir M</creatorcontrib><title>Transformer-based Model for Oral Epithelial Dysplasia Segmentation</title><title>arXiv.org</title><description>Oral epithelial dysplasia (OED) is a premalignant histopathological diagnosis given to lesions of the oral cavity. OED grading is subject to large inter/intra-rater variability, resulting in the under/over-treatment of patients. We developed a new Transformer-based pipeline to improve detection and segmentation of OED in haematoxylin and eosin (H&amp;E) stained whole slide images (WSIs). Our model was trained on OED cases (n = 260) and controls (n = 105) collected using three different scanners, and validated on test data from three external centres in the United Kingdom and Brazil (n = 78). Our internal experiments yield a mean F1-score of 0.81 for OED segmentation, which reduced slightly to 0.71 on external testing, showing good generalisability, and gaining state-of-the-art results. This is the first externally validated study to use Transformers for segmentation in precancerous histology images. Our publicly available model shows great promise to be the first step of a fully-integrated pipeline, allowing earlier and more efficient OED diagnosis, ultimately benefiting patient outcomes.</description><subject>Diagnosis</subject><subject>Histology</subject><subject>Image segmentation</subject><subject>Medical imaging</subject><subject>Transformers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNirEOgjAURRsTE4nyD02cSWoL0lnFuBgH2ckzPLSktNhXBv9eBj_A6Z6ccxcskUrtMp1LuWIpUS-EkPtSFoVK2KEO4KjzYcCQPYCw5VffouWz4rcAllejiS-0ZsbTh0YLZIDf8TmgixCNdxu27MASpr9ds-25qo-XbAz-PSHFpvdTcHNqpNY6L4UWWv33-gLMEzoP</recordid><startdate>20231109</startdate><enddate>20231109</enddate><creator>Shephard, Adam J</creator><creator>Mahmood, Hanya</creator><creator>Ahmed Raza, Shan E</creator><creator>Anna Luiza Damaceno Araujo</creator><creator>Santos-Silva, Alan Roger</creator><creator>Lopes, Marcio Ajudarte</creator><creator>Vargas, Pablo Agustin</creator><creator>McCombe, Kris</creator><creator>Craig, Stephanie</creator><creator>James, Jacqueline</creator><creator>Brooks, Jill</creator><creator>Nankivell, Paul</creator><creator>Mehanna, Hisham</creator><creator>Syed Ali Khurram</creator><creator>Rajpoot, Nasir M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231109</creationdate><title>Transformer-based Model for Oral Epithelial Dysplasia Segmentation</title><author>Shephard, Adam J ; Mahmood, Hanya ; Ahmed Raza, Shan E ; Anna Luiza Damaceno Araujo ; Santos-Silva, Alan Roger ; Lopes, Marcio Ajudarte ; Vargas, Pablo Agustin ; McCombe, Kris ; Craig, Stephanie ; James, Jacqueline ; Brooks, Jill ; Nankivell, Paul ; Mehanna, Hisham ; Syed Ali Khurram ; Rajpoot, Nasir M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28884708083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Diagnosis</topic><topic>Histology</topic><topic>Image segmentation</topic><topic>Medical imaging</topic><topic>Transformers</topic><toplevel>online_resources</toplevel><creatorcontrib>Shephard, Adam J</creatorcontrib><creatorcontrib>Mahmood, Hanya</creatorcontrib><creatorcontrib>Ahmed Raza, Shan E</creatorcontrib><creatorcontrib>Anna Luiza Damaceno Araujo</creatorcontrib><creatorcontrib>Santos-Silva, Alan Roger</creatorcontrib><creatorcontrib>Lopes, Marcio Ajudarte</creatorcontrib><creatorcontrib>Vargas, Pablo Agustin</creatorcontrib><creatorcontrib>McCombe, Kris</creatorcontrib><creatorcontrib>Craig, Stephanie</creatorcontrib><creatorcontrib>James, Jacqueline</creatorcontrib><creatorcontrib>Brooks, Jill</creatorcontrib><creatorcontrib>Nankivell, Paul</creatorcontrib><creatorcontrib>Mehanna, Hisham</creatorcontrib><creatorcontrib>Syed Ali Khurram</creatorcontrib><creatorcontrib>Rajpoot, Nasir M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shephard, Adam J</au><au>Mahmood, Hanya</au><au>Ahmed Raza, Shan E</au><au>Anna Luiza Damaceno Araujo</au><au>Santos-Silva, Alan Roger</au><au>Lopes, Marcio Ajudarte</au><au>Vargas, Pablo Agustin</au><au>McCombe, Kris</au><au>Craig, Stephanie</au><au>James, Jacqueline</au><au>Brooks, Jill</au><au>Nankivell, Paul</au><au>Mehanna, Hisham</au><au>Syed Ali Khurram</au><au>Rajpoot, Nasir M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Transformer-based Model for Oral Epithelial Dysplasia Segmentation</atitle><jtitle>arXiv.org</jtitle><date>2023-11-09</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Oral epithelial dysplasia (OED) is a premalignant histopathological diagnosis given to lesions of the oral cavity. OED grading is subject to large inter/intra-rater variability, resulting in the under/over-treatment of patients. We developed a new Transformer-based pipeline to improve detection and segmentation of OED in haematoxylin and eosin (H&amp;E) stained whole slide images (WSIs). Our model was trained on OED cases (n = 260) and controls (n = 105) collected using three different scanners, and validated on test data from three external centres in the United Kingdom and Brazil (n = 78). Our internal experiments yield a mean F1-score of 0.81 for OED segmentation, which reduced slightly to 0.71 on external testing, showing good generalisability, and gaining state-of-the-art results. This is the first externally validated study to use Transformers for segmentation in precancerous histology images. Our publicly available model shows great promise to be the first step of a fully-integrated pipeline, allowing earlier and more efficient OED diagnosis, ultimately benefiting patient outcomes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2888470808
source Free E- Journals
subjects Diagnosis
Histology
Image segmentation
Medical imaging
Transformers
title Transformer-based Model for Oral Epithelial Dysplasia Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A11%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Transformer-based%20Model%20for%20Oral%20Epithelial%20Dysplasia%20Segmentation&rft.jtitle=arXiv.org&rft.au=Shephard,%20Adam%20J&rft.date=2023-11-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2888470808%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2888470808&rft_id=info:pmid/&rfr_iscdi=true