Multi-Decision Dynamic Intelligent Routing Protocol for Delay-Tolerant Networks

Delay-tolerant networks face challenges in efficiently utilizing network resources and real-time sensing of node and message statuses due to the dynamic changes in their topology. In this paper, we propose a Multi-Decision Dynamic Intelligent (MDDI) routing protocol based on double Q-learning, node...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2023-11, Vol.12 (21), p.4528
Hauptverfasser: Xiong, Yao, Jiang, Shengming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page 4528
container_title Electronics (Basel)
container_volume 12
creator Xiong, Yao
Jiang, Shengming
description Delay-tolerant networks face challenges in efficiently utilizing network resources and real-time sensing of node and message statuses due to the dynamic changes in their topology. In this paper, we propose a Multi-Decision Dynamic Intelligent (MDDI) routing protocol based on double Q-learning, node relationships, and message attributes to achieve efficient message transmission. In the proposed protocol, the entire network is considered a reinforcement learning environment, with all mobile nodes treated as intelligent agents. Each node maintains two Q-tables, which store the Q-values corresponding to when a node forwards a message to a neighboring node. These Q-values are also related to the network’s average latency and average hop count. Additionally, we introduce node relationships to further optimize route selection. Nodes are categorized into three types of relationships: friends, colleagues, and strangers, based on historical interaction information, and message forwarding counts and remaining time are incorporated into the decision-making process. This protocol comprehensively takes into account the attributes of various resources in the network, enabling the dynamic adjustment of message-forwarding decisions as the network evolves. Simulation results show that the proposed multi-decision dynamic intelligent routing protocol achieves the highest message delivery rate as well as the lowest latency and overhead in all states of the network compared with other related routing protocols for DTNs.
doi_str_mv 10.3390/electronics12214528
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2888123816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772532208</galeid><sourcerecordid>A772532208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-b534bbba8fcfcf941504d29af2d027c9637d0a1dcc9afa98f6c04884efd77d283</originalsourceid><addsrcrecordid>eNptUE1LAzEQDaJgqf0FXhY8b83Hbjc5ltaPQrUi9byk2UlJTZOaZJH-e1PqwYPzDjM83rxhHkK3BI8ZE_geLKgUvDMqEkpJVVN-gQYUN6IUVNDLP_M1GsW4w7kEYZzhAVq99DaZcg7KRONdMT86uTeqWLgE1potuFS8-z4Zty3egk9eeVtoH4o5WHks195CkFnzCunbh894g660tBFGv32IPh4f1rPncrl6Wsymy1IxQlK5qVm12Wwk1ypDVKTGVUeF1LTDtFFiwpoOS9IplTkpuJ4oXHFege6apqOcDdHd2fcQ_FcPMbU73weXT7aUc04o42SSVeOzaisttMZpn4JUGR3kJ70DbTI_bRpaM0rxyZadF1TwMQbQ7SGYvQzHluD2lHb7T9rsB8ngdp0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2888123816</pqid></control><display><type>article</type><title>Multi-Decision Dynamic Intelligent Routing Protocol for Delay-Tolerant Networks</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Xiong, Yao ; Jiang, Shengming</creator><creatorcontrib>Xiong, Yao ; Jiang, Shengming</creatorcontrib><description>Delay-tolerant networks face challenges in efficiently utilizing network resources and real-time sensing of node and message statuses due to the dynamic changes in their topology. In this paper, we propose a Multi-Decision Dynamic Intelligent (MDDI) routing protocol based on double Q-learning, node relationships, and message attributes to achieve efficient message transmission. In the proposed protocol, the entire network is considered a reinforcement learning environment, with all mobile nodes treated as intelligent agents. Each node maintains two Q-tables, which store the Q-values corresponding to when a node forwards a message to a neighboring node. These Q-values are also related to the network’s average latency and average hop count. Additionally, we introduce node relationships to further optimize route selection. Nodes are categorized into three types of relationships: friends, colleagues, and strangers, based on historical interaction information, and message forwarding counts and remaining time are incorporated into the decision-making process. This protocol comprehensively takes into account the attributes of various resources in the network, enabling the dynamic adjustment of message-forwarding decisions as the network evolves. Simulation results show that the proposed multi-decision dynamic intelligent routing protocol achieves the highest message delivery rate as well as the lowest latency and overhead in all states of the network compared with other related routing protocols for DTNs.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12214528</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Analysis ; Communication ; Computer network protocols ; Computer networks ; Data transmission ; Decision-making ; Intelligent agents ; Machine learning ; Mathematical optimization ; Messages ; Network latency ; Nodes ; Privacy ; Protocol ; Route selection ; School environment ; Social networks ; Topology ; Wireless networks</subject><ispartof>Electronics (Basel), 2023-11, Vol.12 (21), p.4528</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-b534bbba8fcfcf941504d29af2d027c9637d0a1dcc9afa98f6c04884efd77d283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xiong, Yao</creatorcontrib><creatorcontrib>Jiang, Shengming</creatorcontrib><title>Multi-Decision Dynamic Intelligent Routing Protocol for Delay-Tolerant Networks</title><title>Electronics (Basel)</title><description>Delay-tolerant networks face challenges in efficiently utilizing network resources and real-time sensing of node and message statuses due to the dynamic changes in their topology. In this paper, we propose a Multi-Decision Dynamic Intelligent (MDDI) routing protocol based on double Q-learning, node relationships, and message attributes to achieve efficient message transmission. In the proposed protocol, the entire network is considered a reinforcement learning environment, with all mobile nodes treated as intelligent agents. Each node maintains two Q-tables, which store the Q-values corresponding to when a node forwards a message to a neighboring node. These Q-values are also related to the network’s average latency and average hop count. Additionally, we introduce node relationships to further optimize route selection. Nodes are categorized into three types of relationships: friends, colleagues, and strangers, based on historical interaction information, and message forwarding counts and remaining time are incorporated into the decision-making process. This protocol comprehensively takes into account the attributes of various resources in the network, enabling the dynamic adjustment of message-forwarding decisions as the network evolves. Simulation results show that the proposed multi-decision dynamic intelligent routing protocol achieves the highest message delivery rate as well as the lowest latency and overhead in all states of the network compared with other related routing protocols for DTNs.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Communication</subject><subject>Computer network protocols</subject><subject>Computer networks</subject><subject>Data transmission</subject><subject>Decision-making</subject><subject>Intelligent agents</subject><subject>Machine learning</subject><subject>Mathematical optimization</subject><subject>Messages</subject><subject>Network latency</subject><subject>Nodes</subject><subject>Privacy</subject><subject>Protocol</subject><subject>Route selection</subject><subject>School environment</subject><subject>Social networks</subject><subject>Topology</subject><subject>Wireless networks</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUE1LAzEQDaJgqf0FXhY8b83Hbjc5ltaPQrUi9byk2UlJTZOaZJH-e1PqwYPzDjM83rxhHkK3BI8ZE_geLKgUvDMqEkpJVVN-gQYUN6IUVNDLP_M1GsW4w7kEYZzhAVq99DaZcg7KRONdMT86uTeqWLgE1potuFS8-z4Zty3egk9eeVtoH4o5WHks195CkFnzCunbh894g660tBFGv32IPh4f1rPncrl6Wsymy1IxQlK5qVm12Wwk1ypDVKTGVUeF1LTDtFFiwpoOS9IplTkpuJ4oXHFege6apqOcDdHd2fcQ_FcPMbU73weXT7aUc04o42SSVeOzaisttMZpn4JUGR3kJ70DbTI_bRpaM0rxyZadF1TwMQbQ7SGYvQzHluD2lHb7T9rsB8ngdp0</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Xiong, Yao</creator><creator>Jiang, Shengming</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20231101</creationdate><title>Multi-Decision Dynamic Intelligent Routing Protocol for Delay-Tolerant Networks</title><author>Xiong, Yao ; Jiang, Shengming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-b534bbba8fcfcf941504d29af2d027c9637d0a1dcc9afa98f6c04884efd77d283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Communication</topic><topic>Computer network protocols</topic><topic>Computer networks</topic><topic>Data transmission</topic><topic>Decision-making</topic><topic>Intelligent agents</topic><topic>Machine learning</topic><topic>Mathematical optimization</topic><topic>Messages</topic><topic>Network latency</topic><topic>Nodes</topic><topic>Privacy</topic><topic>Protocol</topic><topic>Route selection</topic><topic>School environment</topic><topic>Social networks</topic><topic>Topology</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Yao</creatorcontrib><creatorcontrib>Jiang, Shengming</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Yao</au><au>Jiang, Shengming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Decision Dynamic Intelligent Routing Protocol for Delay-Tolerant Networks</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>12</volume><issue>21</issue><spage>4528</spage><pages>4528-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Delay-tolerant networks face challenges in efficiently utilizing network resources and real-time sensing of node and message statuses due to the dynamic changes in their topology. In this paper, we propose a Multi-Decision Dynamic Intelligent (MDDI) routing protocol based on double Q-learning, node relationships, and message attributes to achieve efficient message transmission. In the proposed protocol, the entire network is considered a reinforcement learning environment, with all mobile nodes treated as intelligent agents. Each node maintains two Q-tables, which store the Q-values corresponding to when a node forwards a message to a neighboring node. These Q-values are also related to the network’s average latency and average hop count. Additionally, we introduce node relationships to further optimize route selection. Nodes are categorized into three types of relationships: friends, colleagues, and strangers, based on historical interaction information, and message forwarding counts and remaining time are incorporated into the decision-making process. This protocol comprehensively takes into account the attributes of various resources in the network, enabling the dynamic adjustment of message-forwarding decisions as the network evolves. Simulation results show that the proposed multi-decision dynamic intelligent routing protocol achieves the highest message delivery rate as well as the lowest latency and overhead in all states of the network compared with other related routing protocols for DTNs.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12214528</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2023-11, Vol.12 (21), p.4528
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2888123816
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Algorithms
Analysis
Communication
Computer network protocols
Computer networks
Data transmission
Decision-making
Intelligent agents
Machine learning
Mathematical optimization
Messages
Network latency
Nodes
Privacy
Protocol
Route selection
School environment
Social networks
Topology
Wireless networks
title Multi-Decision Dynamic Intelligent Routing Protocol for Delay-Tolerant Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A33%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Decision%20Dynamic%20Intelligent%20Routing%20Protocol%20for%20Delay-Tolerant%20Networks&rft.jtitle=Electronics%20(Basel)&rft.au=Xiong,%20Yao&rft.date=2023-11-01&rft.volume=12&rft.issue=21&rft.spage=4528&rft.pages=4528-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12214528&rft_dat=%3Cgale_proqu%3EA772532208%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2888123816&rft_id=info:pmid/&rft_galeid=A772532208&rfr_iscdi=true