Nickel‐Based Single‐Molecule Catalysts with Synergistic Geometric Transition and Magnetic Field‐Assisted Spin Selection Outperform RuO2 for Oxygen Evolution
Overcoming slow kinetics and high overpotential in electrocatalytic oxygen evolution reaction (OER) requires innovative catalysts and approaches that transcend the scaling relationship between binding energies for intermediates and catalyst surfaces. Inorganic complexes provide unique, customizable...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2023-11, Vol.13 (42) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 42 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 13 |
creator | Saini, Kavish Nair, Aruna N Yadav, Anju Lissette Garcia Enriquez Pollock, Christopher J House, Stephen D Yang, Shize Guo, Xin Sreenivasan, Sreeprasad T |
description | Overcoming slow kinetics and high overpotential in electrocatalytic oxygen evolution reaction (OER) requires innovative catalysts and approaches that transcend the scaling relationship between binding energies for intermediates and catalyst surfaces. Inorganic complexes provide unique, customizable geometries, which can help enhance their efficiencies. However, they are unstable and susceptible to chemical reaction under extreme pH conditions. Immobilizing complexes on substrates creates single‐molecule catalysts (SMCs) with functional similarities to single‐atom catalysts (SACs). Here, an efficient SMC, composed of dichloro(1,3‐bis(diphenylphosphino)propane) nickel [NiCl2dppp] anchored to a graphene acid (GA), is presented. This SMC surpasses ruthenium‐based OER benchmarks, exhibiting an ultra‐low onset and overpotential at 10 mAcm−2 when exposed to a static magnetic field. Comprehensive experimental and theoretical analyses imply that an interfacial charge transfer from the Ni center in NiCl2dppp to GA enhances the OER activity. Spectroscopic investigations reveal an in situ geometrical transformation of the complex and the formation of a paramagnetic Ni center, which under a magnetic field, enables spin‐selective electron transfer, resulting in enhanced OER performance. The results highlight the significance of in situ geometric transformations in SMCs and underline the potential of an external magnetic field to enhance OER performance at a single‐molecule level. |
doi_str_mv | 10.1002/aenm.202302170 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2887827635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2887827635</sourcerecordid><originalsourceid>FETCH-LOGICAL-p223t-d052963f3708741d5dec4a67e64b365fa9ce8b6fe3fcd9571a2df77aaaa1ca653</originalsourceid><addsrcrecordid>eNo9jU1OwzAQRi0EEhV0y9oS6xT_JHayLFVbkFoq0bKu3GQSXFwnxA7QHUfgDByNk-AC4tvMN9KbNwhdUDKghLArBXY3YIRxwqgkR6hHBY0jkcbk-L9zdor6zm1JSJxRwnkPfd7p_AnM1_vHtXJQ4KW2lYGwzmsDeWcAj5RXZu-8w6_aP-Ll3kJbaed1jqdQ78C3oa1aZZ32urZY2QLPVWXhQEw0mCLYhs6Fk4O_0RYvIbh_4EXnG2jLut3h-27BcGh48bavwOLxS226A3SOTkplHPT_5hl6mIxXo5totpjejoazqGGM-6ggCcsEL7kkqYxpkRSQx0pIEPGGi6RUWQ7pRpTAy7zIEkkVK0opVQjNlUj4Gbr89TZt_dyB8-tt3bU2vFyzNJUpk4In_BtL93RR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887827635</pqid></control><display><type>article</type><title>Nickel‐Based Single‐Molecule Catalysts with Synergistic Geometric Transition and Magnetic Field‐Assisted Spin Selection Outperform RuO2 for Oxygen Evolution</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Saini, Kavish ; Nair, Aruna N ; Yadav, Anju ; Lissette Garcia Enriquez ; Pollock, Christopher J ; House, Stephen D ; Yang, Shize ; Guo, Xin ; Sreenivasan, Sreeprasad T</creator><creatorcontrib>Saini, Kavish ; Nair, Aruna N ; Yadav, Anju ; Lissette Garcia Enriquez ; Pollock, Christopher J ; House, Stephen D ; Yang, Shize ; Guo, Xin ; Sreenivasan, Sreeprasad T</creatorcontrib><description>Overcoming slow kinetics and high overpotential in electrocatalytic oxygen evolution reaction (OER) requires innovative catalysts and approaches that transcend the scaling relationship between binding energies for intermediates and catalyst surfaces. Inorganic complexes provide unique, customizable geometries, which can help enhance their efficiencies. However, they are unstable and susceptible to chemical reaction under extreme pH conditions. Immobilizing complexes on substrates creates single‐molecule catalysts (SMCs) with functional similarities to single‐atom catalysts (SACs). Here, an efficient SMC, composed of dichloro(1,3‐bis(diphenylphosphino)propane) nickel [NiCl2dppp] anchored to a graphene acid (GA), is presented. This SMC surpasses ruthenium‐based OER benchmarks, exhibiting an ultra‐low onset and overpotential at 10 mAcm−2 when exposed to a static magnetic field. Comprehensive experimental and theoretical analyses imply that an interfacial charge transfer from the Ni center in NiCl2dppp to GA enhances the OER activity. Spectroscopic investigations reveal an in situ geometrical transformation of the complex and the formation of a paramagnetic Ni center, which under a magnetic field, enables spin‐selective electron transfer, resulting in enhanced OER performance. The results highlight the significance of in situ geometric transformations in SMCs and underline the potential of an external magnetic field to enhance OER performance at a single‐molecule level.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202302170</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysts ; Charge transfer ; Chemical reactions ; Electron spin ; Electron transfer ; Geometric transformation ; Graphene ; Magnetic fields ; Nickel ; Oxygen evolution reactions ; Ruthenium ; Substrates</subject><ispartof>Advanced energy materials, 2023-11, Vol.13 (42)</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Saini, Kavish</creatorcontrib><creatorcontrib>Nair, Aruna N</creatorcontrib><creatorcontrib>Yadav, Anju</creatorcontrib><creatorcontrib>Lissette Garcia Enriquez</creatorcontrib><creatorcontrib>Pollock, Christopher J</creatorcontrib><creatorcontrib>House, Stephen D</creatorcontrib><creatorcontrib>Yang, Shize</creatorcontrib><creatorcontrib>Guo, Xin</creatorcontrib><creatorcontrib>Sreenivasan, Sreeprasad T</creatorcontrib><title>Nickel‐Based Single‐Molecule Catalysts with Synergistic Geometric Transition and Magnetic Field‐Assisted Spin Selection Outperform RuO2 for Oxygen Evolution</title><title>Advanced energy materials</title><description>Overcoming slow kinetics and high overpotential in electrocatalytic oxygen evolution reaction (OER) requires innovative catalysts and approaches that transcend the scaling relationship between binding energies for intermediates and catalyst surfaces. Inorganic complexes provide unique, customizable geometries, which can help enhance their efficiencies. However, they are unstable and susceptible to chemical reaction under extreme pH conditions. Immobilizing complexes on substrates creates single‐molecule catalysts (SMCs) with functional similarities to single‐atom catalysts (SACs). Here, an efficient SMC, composed of dichloro(1,3‐bis(diphenylphosphino)propane) nickel [NiCl2dppp] anchored to a graphene acid (GA), is presented. This SMC surpasses ruthenium‐based OER benchmarks, exhibiting an ultra‐low onset and overpotential at 10 mAcm−2 when exposed to a static magnetic field. Comprehensive experimental and theoretical analyses imply that an interfacial charge transfer from the Ni center in NiCl2dppp to GA enhances the OER activity. Spectroscopic investigations reveal an in situ geometrical transformation of the complex and the formation of a paramagnetic Ni center, which under a magnetic field, enables spin‐selective electron transfer, resulting in enhanced OER performance. The results highlight the significance of in situ geometric transformations in SMCs and underline the potential of an external magnetic field to enhance OER performance at a single‐molecule level.</description><subject>Catalysts</subject><subject>Charge transfer</subject><subject>Chemical reactions</subject><subject>Electron spin</subject><subject>Electron transfer</subject><subject>Geometric transformation</subject><subject>Graphene</subject><subject>Magnetic fields</subject><subject>Nickel</subject><subject>Oxygen evolution reactions</subject><subject>Ruthenium</subject><subject>Substrates</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9jU1OwzAQRi0EEhV0y9oS6xT_JHayLFVbkFoq0bKu3GQSXFwnxA7QHUfgDByNk-AC4tvMN9KbNwhdUDKghLArBXY3YIRxwqgkR6hHBY0jkcbk-L9zdor6zm1JSJxRwnkPfd7p_AnM1_vHtXJQ4KW2lYGwzmsDeWcAj5RXZu-8w6_aP-Ll3kJbaed1jqdQ78C3oa1aZZ32urZY2QLPVWXhQEw0mCLYhs6Fk4O_0RYvIbh_4EXnG2jLut3h-27BcGh48bavwOLxS226A3SOTkplHPT_5hl6mIxXo5totpjejoazqGGM-6ggCcsEL7kkqYxpkRSQx0pIEPGGi6RUWQ7pRpTAy7zIEkkVK0opVQjNlUj4Gbr89TZt_dyB8-tt3bU2vFyzNJUpk4In_BtL93RR</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Saini, Kavish</creator><creator>Nair, Aruna N</creator><creator>Yadav, Anju</creator><creator>Lissette Garcia Enriquez</creator><creator>Pollock, Christopher J</creator><creator>House, Stephen D</creator><creator>Yang, Shize</creator><creator>Guo, Xin</creator><creator>Sreenivasan, Sreeprasad T</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231101</creationdate><title>Nickel‐Based Single‐Molecule Catalysts with Synergistic Geometric Transition and Magnetic Field‐Assisted Spin Selection Outperform RuO2 for Oxygen Evolution</title><author>Saini, Kavish ; Nair, Aruna N ; Yadav, Anju ; Lissette Garcia Enriquez ; Pollock, Christopher J ; House, Stephen D ; Yang, Shize ; Guo, Xin ; Sreenivasan, Sreeprasad T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p223t-d052963f3708741d5dec4a67e64b365fa9ce8b6fe3fcd9571a2df77aaaa1ca653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Catalysts</topic><topic>Charge transfer</topic><topic>Chemical reactions</topic><topic>Electron spin</topic><topic>Electron transfer</topic><topic>Geometric transformation</topic><topic>Graphene</topic><topic>Magnetic fields</topic><topic>Nickel</topic><topic>Oxygen evolution reactions</topic><topic>Ruthenium</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saini, Kavish</creatorcontrib><creatorcontrib>Nair, Aruna N</creatorcontrib><creatorcontrib>Yadav, Anju</creatorcontrib><creatorcontrib>Lissette Garcia Enriquez</creatorcontrib><creatorcontrib>Pollock, Christopher J</creatorcontrib><creatorcontrib>House, Stephen D</creatorcontrib><creatorcontrib>Yang, Shize</creatorcontrib><creatorcontrib>Guo, Xin</creatorcontrib><creatorcontrib>Sreenivasan, Sreeprasad T</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saini, Kavish</au><au>Nair, Aruna N</au><au>Yadav, Anju</au><au>Lissette Garcia Enriquez</au><au>Pollock, Christopher J</au><au>House, Stephen D</au><au>Yang, Shize</au><au>Guo, Xin</au><au>Sreenivasan, Sreeprasad T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nickel‐Based Single‐Molecule Catalysts with Synergistic Geometric Transition and Magnetic Field‐Assisted Spin Selection Outperform RuO2 for Oxygen Evolution</atitle><jtitle>Advanced energy materials</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>13</volume><issue>42</issue><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Overcoming slow kinetics and high overpotential in electrocatalytic oxygen evolution reaction (OER) requires innovative catalysts and approaches that transcend the scaling relationship between binding energies for intermediates and catalyst surfaces. Inorganic complexes provide unique, customizable geometries, which can help enhance their efficiencies. However, they are unstable and susceptible to chemical reaction under extreme pH conditions. Immobilizing complexes on substrates creates single‐molecule catalysts (SMCs) with functional similarities to single‐atom catalysts (SACs). Here, an efficient SMC, composed of dichloro(1,3‐bis(diphenylphosphino)propane) nickel [NiCl2dppp] anchored to a graphene acid (GA), is presented. This SMC surpasses ruthenium‐based OER benchmarks, exhibiting an ultra‐low onset and overpotential at 10 mAcm−2 when exposed to a static magnetic field. Comprehensive experimental and theoretical analyses imply that an interfacial charge transfer from the Ni center in NiCl2dppp to GA enhances the OER activity. Spectroscopic investigations reveal an in situ geometrical transformation of the complex and the formation of a paramagnetic Ni center, which under a magnetic field, enables spin‐selective electron transfer, resulting in enhanced OER performance. The results highlight the significance of in situ geometric transformations in SMCs and underline the potential of an external magnetic field to enhance OER performance at a single‐molecule level.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202302170</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2023-11, Vol.13 (42) |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2887827635 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Catalysts Charge transfer Chemical reactions Electron spin Electron transfer Geometric transformation Graphene Magnetic fields Nickel Oxygen evolution reactions Ruthenium Substrates |
title | Nickel‐Based Single‐Molecule Catalysts with Synergistic Geometric Transition and Magnetic Field‐Assisted Spin Selection Outperform RuO2 for Oxygen Evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T22%3A21%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nickel%E2%80%90Based%20Single%E2%80%90Molecule%20Catalysts%20with%20Synergistic%20Geometric%20Transition%20and%20Magnetic%20Field%E2%80%90Assisted%20Spin%20Selection%20Outperform%20RuO2%20for%20Oxygen%20Evolution&rft.jtitle=Advanced%20energy%20materials&rft.au=Saini,%20Kavish&rft.date=2023-11-01&rft.volume=13&rft.issue=42&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202302170&rft_dat=%3Cproquest%3E2887827635%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2887827635&rft_id=info:pmid/&rfr_iscdi=true |