Pt3Ni Alloy Nanoparticle Electro‐Catalysts with Unique Core‐Shell Structure on Oxygen‐Deficient Layered Perovskite for Solid Oxide Cells
Solid oxide cells (SOCs) are pivotal in electrochemical energy conversion technologies, but their operation at high temperatures necessitates the development of efficient and durable electro‐catalysts. Herein, a novel electro‐catalyst composed of Pt3Ni alloy nanoparticles exsolved on oxygen‐deficien...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2023-11, Vol.13 (42) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 42 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 13 |
creator | Yang, Song Kim, Hyunmin Ji‐Hyun Jang Bai, Wenjun Ye, Caichao Gu, Jiamin Bu, Yunfei |
description | Solid oxide cells (SOCs) are pivotal in electrochemical energy conversion technologies, but their operation at high temperatures necessitates the development of efficient and durable electro‐catalysts. Herein, a novel electro‐catalyst composed of Pt3Ni alloy nanoparticles exsolved on oxygen‐deficient PrBaMn1.8Pt0.15Ni0.05O5+δ layered perovskite oxides is presented. This design addresses the critical problem of nanoparticle agglomeration at high temperatures, a major hurdle for SOCs. The atomic‐scale mechanisms of oxygen vacancy formation and hydrogen evolution reaction kinetics in the material are unraveled through density functional theory calculations. A unique finding of this work is the formation of a core‐shell structure during water electrolysis, simultaneously enhancing the electrochemical performance and operational durability in both fuel cell and electrolysis cell modes. This study not only strengthens the potential of Pt‐Ni alloy nanoparticles as efficient electro‐catalysts for SOCs, but also opens up avenues for future exploration in energy‐related fields. |
doi_str_mv | 10.1002/aenm.202302384 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2887826972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2887826972</sourcerecordid><originalsourceid>FETCH-LOGICAL-p223t-dc76062656df3b9e3ff86aca2effeeb39d29239287988fb10c561000d9f673b53</originalsourceid><addsrcrecordid>eNo9kM9KAzEQxoMoWGqvngOeW7PJNpscy1r_QKmF2nPJ7k5satzUJKvuzScQn9EnMaA4fDAD3_D7mEHoPCOTjBB6qaB9nlBCWZLIj9Ag41k-5iInx_8zo6doFMKepMplRhgboM9VZEuDZ9a6Hi9V6w7KR1NbwHMLdfTu--OrVFHZPsSA30zc4U1rXjrApfOQzPUOrMXr6Ls6dh6wa_H9e_8IbfKuQJvaQBvxQvXgocEr8O41PJkIWDuP186aJu2bJvESJ5yhE61sgNFfH6LN9fyhvB0v7m_uytlifKCUxXFTF5xwyqe80aySwLQWXNWKgtYAFZMNlZRJKgophK4yUk95ehNppOYFq6ZsiC5-uQfv0jEhbveu822K3FIhCkG5LCj7AdTna7U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887826972</pqid></control><display><type>article</type><title>Pt3Ni Alloy Nanoparticle Electro‐Catalysts with Unique Core‐Shell Structure on Oxygen‐Deficient Layered Perovskite for Solid Oxide Cells</title><source>Access via Wiley Online Library</source><creator>Yang, Song ; Kim, Hyunmin ; Ji‐Hyun Jang ; Bai, Wenjun ; Ye, Caichao ; Gu, Jiamin ; Bu, Yunfei</creator><creatorcontrib>Yang, Song ; Kim, Hyunmin ; Ji‐Hyun Jang ; Bai, Wenjun ; Ye, Caichao ; Gu, Jiamin ; Bu, Yunfei</creatorcontrib><description>Solid oxide cells (SOCs) are pivotal in electrochemical energy conversion technologies, but their operation at high temperatures necessitates the development of efficient and durable electro‐catalysts. Herein, a novel electro‐catalyst composed of Pt3Ni alloy nanoparticles exsolved on oxygen‐deficient PrBaMn1.8Pt0.15Ni0.05O5+δ layered perovskite oxides is presented. This design addresses the critical problem of nanoparticle agglomeration at high temperatures, a major hurdle for SOCs. The atomic‐scale mechanisms of oxygen vacancy formation and hydrogen evolution reaction kinetics in the material are unraveled through density functional theory calculations. A unique finding of this work is the formation of a core‐shell structure during water electrolysis, simultaneously enhancing the electrochemical performance and operational durability in both fuel cell and electrolysis cell modes. This study not only strengthens the potential of Pt‐Ni alloy nanoparticles as efficient electro‐catalysts for SOCs, but also opens up avenues for future exploration in energy‐related fields.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202302384</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysts ; Core-shell structure ; Density functional theory ; Durability ; Electrochemical analysis ; Electrolysis ; Electrolytic cells ; Energy conversion ; Fuel cells ; High temperature ; Hydrogen evolution reactions ; Nanoalloys ; Nanoparticles ; Oxygen ; Perovskites ; Reaction kinetics</subject><ispartof>Advanced energy materials, 2023-11, Vol.13 (42)</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Yang, Song</creatorcontrib><creatorcontrib>Kim, Hyunmin</creatorcontrib><creatorcontrib>Ji‐Hyun Jang</creatorcontrib><creatorcontrib>Bai, Wenjun</creatorcontrib><creatorcontrib>Ye, Caichao</creatorcontrib><creatorcontrib>Gu, Jiamin</creatorcontrib><creatorcontrib>Bu, Yunfei</creatorcontrib><title>Pt3Ni Alloy Nanoparticle Electro‐Catalysts with Unique Core‐Shell Structure on Oxygen‐Deficient Layered Perovskite for Solid Oxide Cells</title><title>Advanced energy materials</title><description>Solid oxide cells (SOCs) are pivotal in electrochemical energy conversion technologies, but their operation at high temperatures necessitates the development of efficient and durable electro‐catalysts. Herein, a novel electro‐catalyst composed of Pt3Ni alloy nanoparticles exsolved on oxygen‐deficient PrBaMn1.8Pt0.15Ni0.05O5+δ layered perovskite oxides is presented. This design addresses the critical problem of nanoparticle agglomeration at high temperatures, a major hurdle for SOCs. The atomic‐scale mechanisms of oxygen vacancy formation and hydrogen evolution reaction kinetics in the material are unraveled through density functional theory calculations. A unique finding of this work is the formation of a core‐shell structure during water electrolysis, simultaneously enhancing the electrochemical performance and operational durability in both fuel cell and electrolysis cell modes. This study not only strengthens the potential of Pt‐Ni alloy nanoparticles as efficient electro‐catalysts for SOCs, but also opens up avenues for future exploration in energy‐related fields.</description><subject>Catalysts</subject><subject>Core-shell structure</subject><subject>Density functional theory</subject><subject>Durability</subject><subject>Electrochemical analysis</subject><subject>Electrolysis</subject><subject>Electrolytic cells</subject><subject>Energy conversion</subject><subject>Fuel cells</subject><subject>High temperature</subject><subject>Hydrogen evolution reactions</subject><subject>Nanoalloys</subject><subject>Nanoparticles</subject><subject>Oxygen</subject><subject>Perovskites</subject><subject>Reaction kinetics</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM9KAzEQxoMoWGqvngOeW7PJNpscy1r_QKmF2nPJ7k5satzUJKvuzScQn9EnMaA4fDAD3_D7mEHoPCOTjBB6qaB9nlBCWZLIj9Ag41k-5iInx_8zo6doFMKepMplRhgboM9VZEuDZ9a6Hi9V6w7KR1NbwHMLdfTu--OrVFHZPsSA30zc4U1rXjrApfOQzPUOrMXr6Ls6dh6wa_H9e_8IbfKuQJvaQBvxQvXgocEr8O41PJkIWDuP186aJu2bJvESJ5yhE61sgNFfH6LN9fyhvB0v7m_uytlifKCUxXFTF5xwyqe80aySwLQWXNWKgtYAFZMNlZRJKgophK4yUk95ehNppOYFq6ZsiC5-uQfv0jEhbveu822K3FIhCkG5LCj7AdTna7U</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Yang, Song</creator><creator>Kim, Hyunmin</creator><creator>Ji‐Hyun Jang</creator><creator>Bai, Wenjun</creator><creator>Ye, Caichao</creator><creator>Gu, Jiamin</creator><creator>Bu, Yunfei</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231101</creationdate><title>Pt3Ni Alloy Nanoparticle Electro‐Catalysts with Unique Core‐Shell Structure on Oxygen‐Deficient Layered Perovskite for Solid Oxide Cells</title><author>Yang, Song ; Kim, Hyunmin ; Ji‐Hyun Jang ; Bai, Wenjun ; Ye, Caichao ; Gu, Jiamin ; Bu, Yunfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p223t-dc76062656df3b9e3ff86aca2effeeb39d29239287988fb10c561000d9f673b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Catalysts</topic><topic>Core-shell structure</topic><topic>Density functional theory</topic><topic>Durability</topic><topic>Electrochemical analysis</topic><topic>Electrolysis</topic><topic>Electrolytic cells</topic><topic>Energy conversion</topic><topic>Fuel cells</topic><topic>High temperature</topic><topic>Hydrogen evolution reactions</topic><topic>Nanoalloys</topic><topic>Nanoparticles</topic><topic>Oxygen</topic><topic>Perovskites</topic><topic>Reaction kinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Song</creatorcontrib><creatorcontrib>Kim, Hyunmin</creatorcontrib><creatorcontrib>Ji‐Hyun Jang</creatorcontrib><creatorcontrib>Bai, Wenjun</creatorcontrib><creatorcontrib>Ye, Caichao</creatorcontrib><creatorcontrib>Gu, Jiamin</creatorcontrib><creatorcontrib>Bu, Yunfei</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Song</au><au>Kim, Hyunmin</au><au>Ji‐Hyun Jang</au><au>Bai, Wenjun</au><au>Ye, Caichao</au><au>Gu, Jiamin</au><au>Bu, Yunfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pt3Ni Alloy Nanoparticle Electro‐Catalysts with Unique Core‐Shell Structure on Oxygen‐Deficient Layered Perovskite for Solid Oxide Cells</atitle><jtitle>Advanced energy materials</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>13</volume><issue>42</issue><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Solid oxide cells (SOCs) are pivotal in electrochemical energy conversion technologies, but their operation at high temperatures necessitates the development of efficient and durable electro‐catalysts. Herein, a novel electro‐catalyst composed of Pt3Ni alloy nanoparticles exsolved on oxygen‐deficient PrBaMn1.8Pt0.15Ni0.05O5+δ layered perovskite oxides is presented. This design addresses the critical problem of nanoparticle agglomeration at high temperatures, a major hurdle for SOCs. The atomic‐scale mechanisms of oxygen vacancy formation and hydrogen evolution reaction kinetics in the material are unraveled through density functional theory calculations. A unique finding of this work is the formation of a core‐shell structure during water electrolysis, simultaneously enhancing the electrochemical performance and operational durability in both fuel cell and electrolysis cell modes. This study not only strengthens the potential of Pt‐Ni alloy nanoparticles as efficient electro‐catalysts for SOCs, but also opens up avenues for future exploration in energy‐related fields.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202302384</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2023-11, Vol.13 (42) |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2887826972 |
source | Access via Wiley Online Library |
subjects | Catalysts Core-shell structure Density functional theory Durability Electrochemical analysis Electrolysis Electrolytic cells Energy conversion Fuel cells High temperature Hydrogen evolution reactions Nanoalloys Nanoparticles Oxygen Perovskites Reaction kinetics |
title | Pt3Ni Alloy Nanoparticle Electro‐Catalysts with Unique Core‐Shell Structure on Oxygen‐Deficient Layered Perovskite for Solid Oxide Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T13%3A13%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pt3Ni%20Alloy%20Nanoparticle%20Electro%E2%80%90Catalysts%20with%20Unique%20Core%E2%80%90Shell%20Structure%20on%20Oxygen%E2%80%90Deficient%20Layered%20Perovskite%20for%20Solid%20Oxide%20Cells&rft.jtitle=Advanced%20energy%20materials&rft.au=Yang,%20Song&rft.date=2023-11-01&rft.volume=13&rft.issue=42&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202302384&rft_dat=%3Cproquest%3E2887826972%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2887826972&rft_id=info:pmid/&rfr_iscdi=true |