Pt3Ni Alloy Nanoparticle Electro‐Catalysts with Unique Core‐Shell Structure on Oxygen‐Deficient Layered Perovskite for Solid Oxide Cells

Solid oxide cells (SOCs) are pivotal in electrochemical energy conversion technologies, but their operation at high temperatures necessitates the development of efficient and durable electro‐catalysts. Herein, a novel electro‐catalyst composed of Pt3Ni alloy nanoparticles exsolved on oxygen‐deficien...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2023-11, Vol.13 (42)
Hauptverfasser: Yang, Song, Kim, Hyunmin, Ji‐Hyun Jang, Bai, Wenjun, Ye, Caichao, Gu, Jiamin, Bu, Yunfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 42
container_start_page
container_title Advanced energy materials
container_volume 13
creator Yang, Song
Kim, Hyunmin
Ji‐Hyun Jang
Bai, Wenjun
Ye, Caichao
Gu, Jiamin
Bu, Yunfei
description Solid oxide cells (SOCs) are pivotal in electrochemical energy conversion technologies, but their operation at high temperatures necessitates the development of efficient and durable electro‐catalysts. Herein, a novel electro‐catalyst composed of Pt3Ni alloy nanoparticles exsolved on oxygen‐deficient PrBaMn1.8Pt0.15Ni0.05O5+δ layered perovskite oxides is presented. This design addresses the critical problem of nanoparticle agglomeration at high temperatures, a major hurdle for SOCs. The atomic‐scale mechanisms of oxygen vacancy formation and hydrogen evolution reaction kinetics in the material are unraveled through density functional theory calculations. A unique finding of this work is the formation of a core‐shell structure during water electrolysis, simultaneously enhancing the electrochemical performance and operational durability in both fuel cell and electrolysis cell modes. This study not only strengthens the potential of Pt‐Ni alloy nanoparticles as efficient electro‐catalysts for SOCs, but also opens up avenues for future exploration in energy‐related fields.
doi_str_mv 10.1002/aenm.202302384
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2887826972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2887826972</sourcerecordid><originalsourceid>FETCH-LOGICAL-p223t-dc76062656df3b9e3ff86aca2effeeb39d29239287988fb10c561000d9f673b53</originalsourceid><addsrcrecordid>eNo9kM9KAzEQxoMoWGqvngOeW7PJNpscy1r_QKmF2nPJ7k5satzUJKvuzScQn9EnMaA4fDAD3_D7mEHoPCOTjBB6qaB9nlBCWZLIj9Ag41k-5iInx_8zo6doFMKepMplRhgboM9VZEuDZ9a6Hi9V6w7KR1NbwHMLdfTu--OrVFHZPsSA30zc4U1rXjrApfOQzPUOrMXr6Ls6dh6wa_H9e_8IbfKuQJvaQBvxQvXgocEr8O41PJkIWDuP186aJu2bJvESJ5yhE61sgNFfH6LN9fyhvB0v7m_uytlifKCUxXFTF5xwyqe80aySwLQWXNWKgtYAFZMNlZRJKgophK4yUk95ehNppOYFq6ZsiC5-uQfv0jEhbveu822K3FIhCkG5LCj7AdTna7U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887826972</pqid></control><display><type>article</type><title>Pt3Ni Alloy Nanoparticle Electro‐Catalysts with Unique Core‐Shell Structure on Oxygen‐Deficient Layered Perovskite for Solid Oxide Cells</title><source>Access via Wiley Online Library</source><creator>Yang, Song ; Kim, Hyunmin ; Ji‐Hyun Jang ; Bai, Wenjun ; Ye, Caichao ; Gu, Jiamin ; Bu, Yunfei</creator><creatorcontrib>Yang, Song ; Kim, Hyunmin ; Ji‐Hyun Jang ; Bai, Wenjun ; Ye, Caichao ; Gu, Jiamin ; Bu, Yunfei</creatorcontrib><description>Solid oxide cells (SOCs) are pivotal in electrochemical energy conversion technologies, but their operation at high temperatures necessitates the development of efficient and durable electro‐catalysts. Herein, a novel electro‐catalyst composed of Pt3Ni alloy nanoparticles exsolved on oxygen‐deficient PrBaMn1.8Pt0.15Ni0.05O5+δ layered perovskite oxides is presented. This design addresses the critical problem of nanoparticle agglomeration at high temperatures, a major hurdle for SOCs. The atomic‐scale mechanisms of oxygen vacancy formation and hydrogen evolution reaction kinetics in the material are unraveled through density functional theory calculations. A unique finding of this work is the formation of a core‐shell structure during water electrolysis, simultaneously enhancing the electrochemical performance and operational durability in both fuel cell and electrolysis cell modes. This study not only strengthens the potential of Pt‐Ni alloy nanoparticles as efficient electro‐catalysts for SOCs, but also opens up avenues for future exploration in energy‐related fields.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202302384</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysts ; Core-shell structure ; Density functional theory ; Durability ; Electrochemical analysis ; Electrolysis ; Electrolytic cells ; Energy conversion ; Fuel cells ; High temperature ; Hydrogen evolution reactions ; Nanoalloys ; Nanoparticles ; Oxygen ; Perovskites ; Reaction kinetics</subject><ispartof>Advanced energy materials, 2023-11, Vol.13 (42)</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Yang, Song</creatorcontrib><creatorcontrib>Kim, Hyunmin</creatorcontrib><creatorcontrib>Ji‐Hyun Jang</creatorcontrib><creatorcontrib>Bai, Wenjun</creatorcontrib><creatorcontrib>Ye, Caichao</creatorcontrib><creatorcontrib>Gu, Jiamin</creatorcontrib><creatorcontrib>Bu, Yunfei</creatorcontrib><title>Pt3Ni Alloy Nanoparticle Electro‐Catalysts with Unique Core‐Shell Structure on Oxygen‐Deficient Layered Perovskite for Solid Oxide Cells</title><title>Advanced energy materials</title><description>Solid oxide cells (SOCs) are pivotal in electrochemical energy conversion technologies, but their operation at high temperatures necessitates the development of efficient and durable electro‐catalysts. Herein, a novel electro‐catalyst composed of Pt3Ni alloy nanoparticles exsolved on oxygen‐deficient PrBaMn1.8Pt0.15Ni0.05O5+δ layered perovskite oxides is presented. This design addresses the critical problem of nanoparticle agglomeration at high temperatures, a major hurdle for SOCs. The atomic‐scale mechanisms of oxygen vacancy formation and hydrogen evolution reaction kinetics in the material are unraveled through density functional theory calculations. A unique finding of this work is the formation of a core‐shell structure during water electrolysis, simultaneously enhancing the electrochemical performance and operational durability in both fuel cell and electrolysis cell modes. This study not only strengthens the potential of Pt‐Ni alloy nanoparticles as efficient electro‐catalysts for SOCs, but also opens up avenues for future exploration in energy‐related fields.</description><subject>Catalysts</subject><subject>Core-shell structure</subject><subject>Density functional theory</subject><subject>Durability</subject><subject>Electrochemical analysis</subject><subject>Electrolysis</subject><subject>Electrolytic cells</subject><subject>Energy conversion</subject><subject>Fuel cells</subject><subject>High temperature</subject><subject>Hydrogen evolution reactions</subject><subject>Nanoalloys</subject><subject>Nanoparticles</subject><subject>Oxygen</subject><subject>Perovskites</subject><subject>Reaction kinetics</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM9KAzEQxoMoWGqvngOeW7PJNpscy1r_QKmF2nPJ7k5satzUJKvuzScQn9EnMaA4fDAD3_D7mEHoPCOTjBB6qaB9nlBCWZLIj9Ag41k-5iInx_8zo6doFMKepMplRhgboM9VZEuDZ9a6Hi9V6w7KR1NbwHMLdfTu--OrVFHZPsSA30zc4U1rXjrApfOQzPUOrMXr6Ls6dh6wa_H9e_8IbfKuQJvaQBvxQvXgocEr8O41PJkIWDuP186aJu2bJvESJ5yhE61sgNFfH6LN9fyhvB0v7m_uytlifKCUxXFTF5xwyqe80aySwLQWXNWKgtYAFZMNlZRJKgophK4yUk95ehNppOYFq6ZsiC5-uQfv0jEhbveu822K3FIhCkG5LCj7AdTna7U</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Yang, Song</creator><creator>Kim, Hyunmin</creator><creator>Ji‐Hyun Jang</creator><creator>Bai, Wenjun</creator><creator>Ye, Caichao</creator><creator>Gu, Jiamin</creator><creator>Bu, Yunfei</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231101</creationdate><title>Pt3Ni Alloy Nanoparticle Electro‐Catalysts with Unique Core‐Shell Structure on Oxygen‐Deficient Layered Perovskite for Solid Oxide Cells</title><author>Yang, Song ; Kim, Hyunmin ; Ji‐Hyun Jang ; Bai, Wenjun ; Ye, Caichao ; Gu, Jiamin ; Bu, Yunfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p223t-dc76062656df3b9e3ff86aca2effeeb39d29239287988fb10c561000d9f673b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Catalysts</topic><topic>Core-shell structure</topic><topic>Density functional theory</topic><topic>Durability</topic><topic>Electrochemical analysis</topic><topic>Electrolysis</topic><topic>Electrolytic cells</topic><topic>Energy conversion</topic><topic>Fuel cells</topic><topic>High temperature</topic><topic>Hydrogen evolution reactions</topic><topic>Nanoalloys</topic><topic>Nanoparticles</topic><topic>Oxygen</topic><topic>Perovskites</topic><topic>Reaction kinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Song</creatorcontrib><creatorcontrib>Kim, Hyunmin</creatorcontrib><creatorcontrib>Ji‐Hyun Jang</creatorcontrib><creatorcontrib>Bai, Wenjun</creatorcontrib><creatorcontrib>Ye, Caichao</creatorcontrib><creatorcontrib>Gu, Jiamin</creatorcontrib><creatorcontrib>Bu, Yunfei</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Song</au><au>Kim, Hyunmin</au><au>Ji‐Hyun Jang</au><au>Bai, Wenjun</au><au>Ye, Caichao</au><au>Gu, Jiamin</au><au>Bu, Yunfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pt3Ni Alloy Nanoparticle Electro‐Catalysts with Unique Core‐Shell Structure on Oxygen‐Deficient Layered Perovskite for Solid Oxide Cells</atitle><jtitle>Advanced energy materials</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>13</volume><issue>42</issue><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Solid oxide cells (SOCs) are pivotal in electrochemical energy conversion technologies, but their operation at high temperatures necessitates the development of efficient and durable electro‐catalysts. Herein, a novel electro‐catalyst composed of Pt3Ni alloy nanoparticles exsolved on oxygen‐deficient PrBaMn1.8Pt0.15Ni0.05O5+δ layered perovskite oxides is presented. This design addresses the critical problem of nanoparticle agglomeration at high temperatures, a major hurdle for SOCs. The atomic‐scale mechanisms of oxygen vacancy formation and hydrogen evolution reaction kinetics in the material are unraveled through density functional theory calculations. A unique finding of this work is the formation of a core‐shell structure during water electrolysis, simultaneously enhancing the electrochemical performance and operational durability in both fuel cell and electrolysis cell modes. This study not only strengthens the potential of Pt‐Ni alloy nanoparticles as efficient electro‐catalysts for SOCs, but also opens up avenues for future exploration in energy‐related fields.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202302384</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2023-11, Vol.13 (42)
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2887826972
source Access via Wiley Online Library
subjects Catalysts
Core-shell structure
Density functional theory
Durability
Electrochemical analysis
Electrolysis
Electrolytic cells
Energy conversion
Fuel cells
High temperature
Hydrogen evolution reactions
Nanoalloys
Nanoparticles
Oxygen
Perovskites
Reaction kinetics
title Pt3Ni Alloy Nanoparticle Electro‐Catalysts with Unique Core‐Shell Structure on Oxygen‐Deficient Layered Perovskite for Solid Oxide Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T13%3A13%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pt3Ni%20Alloy%20Nanoparticle%20Electro%E2%80%90Catalysts%20with%20Unique%20Core%E2%80%90Shell%20Structure%20on%20Oxygen%E2%80%90Deficient%20Layered%20Perovskite%20for%20Solid%20Oxide%20Cells&rft.jtitle=Advanced%20energy%20materials&rft.au=Yang,%20Song&rft.date=2023-11-01&rft.volume=13&rft.issue=42&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202302384&rft_dat=%3Cproquest%3E2887826972%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2887826972&rft_id=info:pmid/&rfr_iscdi=true