Measuring the scattering tensor of a disordered nonlinear medium
A complex scattering medium offers spatial mixing of the incoming waves via numerous randomly wired channels, making it act as a unique linear optical operator. However, its use as a nonlinear operator has been unexplored due to the difficulty in formulating the nonlinear wave–medium interaction. He...
Gespeichert in:
Veröffentlicht in: | Nature physics 2023-11, Vol.19 (11), p.1709-1718 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1718 |
---|---|
container_issue | 11 |
container_start_page | 1709 |
container_title | Nature physics |
container_volume | 19 |
creator | Moon, Jungho Cho, Ye-Chan Kang, Sungsam Jang, Mooseok Choi, Wonshik |
description | A complex scattering medium offers spatial mixing of the incoming waves via numerous randomly wired channels, making it act as a unique linear optical operator. However, its use as a nonlinear operator has been unexplored due to the difficulty in formulating the nonlinear wave–medium interaction. Here we present a theoretical framework and experimental proof that a third-order scattering tensor completely describes the input–output response of a nonlinear scattering medium made of second-harmonic-generation nanoparticles. The rank of the nonlinear scattering tensor is higher than that of a second-order scattering tensor describing a linear scattering medium, scaling with the number of the spatially orthogonal illumination channels. We implement the inverse of the nonlinear scattering tensor by tensor reshaping and minimization operation, which enables us to retrieve the original incident wave from the speckled nonlinear wave. Using the increased rank of the scattering tensor along with its inverse operation, we demonstrate that the disordered nonlinear medium can be used as a highly scalable nonlinear optical operator for optical encryptions, all-optical multichannel logic AND gates, and optical kernel methods in machine learning.
Disordered media with their numerous scattering channels can be used as optical operators. Measurements of the scattering tensor of a second-harmonic medium extend this computing application to the nonlinear regime. |
doi_str_mv | 10.1038/s41567-023-02163-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2887724130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2887724130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7fc57b3ab5b695e16d1515b53175399da0f7bf1180315f0188c24157cbf03ed73</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoHPAU8VzOdpklvyuIXrHjRc0ibiXbZbWvSHvz3Zq3ozcMwb-C9N7zH2DmISxCor2IBslSZyDENlJjpA7YAVcgsLzQc_mKFx-wkxo0QRV4CLtj1E9k4hbZ74-M78djYcaT5pC72gfeeW-7aBB0Fcrzru23bkQ18R66ddqfsyNttpLOfvWSvd7cvq4ds_Xz_uLpZZw1CNWbKN1LVaGtZl5UkKB1IkLVEUBKrylnhVe0BtECQXoDWTZ4yqab2AskpXLKL2XcI_cdEcTSbfgpdemlyrZVKbBSJlc-sJvQxBvJmCO3Ohk8DwuybMnNTJjVlvpsyOolwFsVhn5zCn_U_qi_ALWq6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887724130</pqid></control><display><type>article</type><title>Measuring the scattering tensor of a disordered nonlinear medium</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Moon, Jungho ; Cho, Ye-Chan ; Kang, Sungsam ; Jang, Mooseok ; Choi, Wonshik</creator><creatorcontrib>Moon, Jungho ; Cho, Ye-Chan ; Kang, Sungsam ; Jang, Mooseok ; Choi, Wonshik</creatorcontrib><description>A complex scattering medium offers spatial mixing of the incoming waves via numerous randomly wired channels, making it act as a unique linear optical operator. However, its use as a nonlinear operator has been unexplored due to the difficulty in formulating the nonlinear wave–medium interaction. Here we present a theoretical framework and experimental proof that a third-order scattering tensor completely describes the input–output response of a nonlinear scattering medium made of second-harmonic-generation nanoparticles. The rank of the nonlinear scattering tensor is higher than that of a second-order scattering tensor describing a linear scattering medium, scaling with the number of the spatially orthogonal illumination channels. We implement the inverse of the nonlinear scattering tensor by tensor reshaping and minimization operation, which enables us to retrieve the original incident wave from the speckled nonlinear wave. Using the increased rank of the scattering tensor along with its inverse operation, we demonstrate that the disordered nonlinear medium can be used as a highly scalable nonlinear optical operator for optical encryptions, all-optical multichannel logic AND gates, and optical kernel methods in machine learning.
Disordered media with their numerous scattering channels can be used as optical operators. Measurements of the scattering tensor of a second-harmonic medium extend this computing application to the nonlinear regime.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-023-02163-8</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>132/124 ; 639/624/1075 ; 639/624/400 ; Atomic ; Channels ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Incident waves ; Kernel functions ; Machine learning ; Mathematical analysis ; Mathematical and Computational Physics ; Molecular ; Nanoparticles ; Nonlinear optics ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Propagation ; Scattering ; Tensors ; Theoretical</subject><ispartof>Nature physics, 2023-11, Vol.19 (11), p.1709-1718</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7fc57b3ab5b695e16d1515b53175399da0f7bf1180315f0188c24157cbf03ed73</citedby><cites>FETCH-LOGICAL-c319t-7fc57b3ab5b695e16d1515b53175399da0f7bf1180315f0188c24157cbf03ed73</cites><orcidid>0000-0002-5146-4716 ; 0000-0002-9445-7081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-023-02163-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-023-02163-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Moon, Jungho</creatorcontrib><creatorcontrib>Cho, Ye-Chan</creatorcontrib><creatorcontrib>Kang, Sungsam</creatorcontrib><creatorcontrib>Jang, Mooseok</creatorcontrib><creatorcontrib>Choi, Wonshik</creatorcontrib><title>Measuring the scattering tensor of a disordered nonlinear medium</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>A complex scattering medium offers spatial mixing of the incoming waves via numerous randomly wired channels, making it act as a unique linear optical operator. However, its use as a nonlinear operator has been unexplored due to the difficulty in formulating the nonlinear wave–medium interaction. Here we present a theoretical framework and experimental proof that a third-order scattering tensor completely describes the input–output response of a nonlinear scattering medium made of second-harmonic-generation nanoparticles. The rank of the nonlinear scattering tensor is higher than that of a second-order scattering tensor describing a linear scattering medium, scaling with the number of the spatially orthogonal illumination channels. We implement the inverse of the nonlinear scattering tensor by tensor reshaping and minimization operation, which enables us to retrieve the original incident wave from the speckled nonlinear wave. Using the increased rank of the scattering tensor along with its inverse operation, we demonstrate that the disordered nonlinear medium can be used as a highly scalable nonlinear optical operator for optical encryptions, all-optical multichannel logic AND gates, and optical kernel methods in machine learning.
Disordered media with their numerous scattering channels can be used as optical operators. Measurements of the scattering tensor of a second-harmonic medium extend this computing application to the nonlinear regime.</description><subject>132/124</subject><subject>639/624/1075</subject><subject>639/624/400</subject><subject>Atomic</subject><subject>Channels</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Incident waves</subject><subject>Kernel functions</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Nanoparticles</subject><subject>Nonlinear optics</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Propagation</subject><subject>Scattering</subject><subject>Tensors</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UE1LxDAQDaLguvoHPAU8VzOdpklvyuIXrHjRc0ibiXbZbWvSHvz3Zq3ozcMwb-C9N7zH2DmISxCor2IBslSZyDENlJjpA7YAVcgsLzQc_mKFx-wkxo0QRV4CLtj1E9k4hbZ74-M78djYcaT5pC72gfeeW-7aBB0Fcrzru23bkQ18R66ddqfsyNttpLOfvWSvd7cvq4ds_Xz_uLpZZw1CNWbKN1LVaGtZl5UkKB1IkLVEUBKrylnhVe0BtECQXoDWTZ4yqab2AskpXLKL2XcI_cdEcTSbfgpdemlyrZVKbBSJlc-sJvQxBvJmCO3Ohk8DwuybMnNTJjVlvpsyOolwFsVhn5zCn_U_qi_ALWq6</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Moon, Jungho</creator><creator>Cho, Ye-Chan</creator><creator>Kang, Sungsam</creator><creator>Jang, Mooseok</creator><creator>Choi, Wonshik</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5146-4716</orcidid><orcidid>https://orcid.org/0000-0002-9445-7081</orcidid></search><sort><creationdate>20231101</creationdate><title>Measuring the scattering tensor of a disordered nonlinear medium</title><author>Moon, Jungho ; Cho, Ye-Chan ; Kang, Sungsam ; Jang, Mooseok ; Choi, Wonshik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7fc57b3ab5b695e16d1515b53175399da0f7bf1180315f0188c24157cbf03ed73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>132/124</topic><topic>639/624/1075</topic><topic>639/624/400</topic><topic>Atomic</topic><topic>Channels</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Incident waves</topic><topic>Kernel functions</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Nanoparticles</topic><topic>Nonlinear optics</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Propagation</topic><topic>Scattering</topic><topic>Tensors</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moon, Jungho</creatorcontrib><creatorcontrib>Cho, Ye-Chan</creatorcontrib><creatorcontrib>Kang, Sungsam</creatorcontrib><creatorcontrib>Jang, Mooseok</creatorcontrib><creatorcontrib>Choi, Wonshik</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moon, Jungho</au><au>Cho, Ye-Chan</au><au>Kang, Sungsam</au><au>Jang, Mooseok</au><au>Choi, Wonshik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring the scattering tensor of a disordered nonlinear medium</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>19</volume><issue>11</issue><spage>1709</spage><epage>1718</epage><pages>1709-1718</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>A complex scattering medium offers spatial mixing of the incoming waves via numerous randomly wired channels, making it act as a unique linear optical operator. However, its use as a nonlinear operator has been unexplored due to the difficulty in formulating the nonlinear wave–medium interaction. Here we present a theoretical framework and experimental proof that a third-order scattering tensor completely describes the input–output response of a nonlinear scattering medium made of second-harmonic-generation nanoparticles. The rank of the nonlinear scattering tensor is higher than that of a second-order scattering tensor describing a linear scattering medium, scaling with the number of the spatially orthogonal illumination channels. We implement the inverse of the nonlinear scattering tensor by tensor reshaping and minimization operation, which enables us to retrieve the original incident wave from the speckled nonlinear wave. Using the increased rank of the scattering tensor along with its inverse operation, we demonstrate that the disordered nonlinear medium can be used as a highly scalable nonlinear optical operator for optical encryptions, all-optical multichannel logic AND gates, and optical kernel methods in machine learning.
Disordered media with their numerous scattering channels can be used as optical operators. Measurements of the scattering tensor of a second-harmonic medium extend this computing application to the nonlinear regime.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-023-02163-8</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5146-4716</orcidid><orcidid>https://orcid.org/0000-0002-9445-7081</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2023-11, Vol.19 (11), p.1709-1718 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_journals_2887724130 |
source | SpringerLink Journals; Nature Journals Online |
subjects | 132/124 639/624/1075 639/624/400 Atomic Channels Classical and Continuum Physics Complex Systems Condensed Matter Physics Incident waves Kernel functions Machine learning Mathematical analysis Mathematical and Computational Physics Molecular Nanoparticles Nonlinear optics Optical and Plasma Physics Physics Physics and Astronomy Propagation Scattering Tensors Theoretical |
title | Measuring the scattering tensor of a disordered nonlinear medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A01%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20the%20scattering%20tensor%20of%20a%20disordered%20nonlinear%20medium&rft.jtitle=Nature%20physics&rft.au=Moon,%20Jungho&rft.date=2023-11-01&rft.volume=19&rft.issue=11&rft.spage=1709&rft.epage=1718&rft.pages=1709-1718&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-023-02163-8&rft_dat=%3Cproquest_cross%3E2887724130%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2887724130&rft_id=info:pmid/&rfr_iscdi=true |