Mechanical strain induced topological phase changes of few layer ZrTe\(_5\)

Understanding the topological aspects of the band structure of solids has fundamentally changed our appreciation of their properties. The layered, van der Waals transition-metal pentatelluride ZrTe\(_5\) has proven on numerous occasions to be an excellent candidate for the study of controllable topo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-11
Hauptverfasser: Tajkov, Zoltán, Konrád Kandrai, Nagy, Dániel, Tapasztó, Levente, Koltai, János, Nemes-Incze, Péter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Tajkov, Zoltán
Konrád Kandrai
Nagy, Dániel
Tapasztó, Levente
Koltai, János
Nemes-Incze, Péter
description Understanding the topological aspects of the band structure of solids has fundamentally changed our appreciation of their properties. The layered, van der Waals transition-metal pentatelluride ZrTe\(_5\) has proven on numerous occasions to be an excellent candidate for the study of controllable topological phase transitions. Here, we investigate the topological phase diagrams of monolayer and bilayer forms of ZrTe\(_5\), under mechanical deformations using \textit{ab initio} techniques. We find that mechanical deformation can close the monolayer's topological gap, while the bilayer exhibits richer phase diagram, including both topological insulating, trivial metallic and insulating phases. The bilayer is predicted to be on the topological phase boundary. We also address the preparation of monolayers, using \emph{ab initio} simulations and experimental scanning tunneling microscopy measurements. We confirm that while monolayer ZrTe\(_5\) is difficult to exfoliate without compromising its crystalline structure, bilayers offer a more stable alternative, revealing the complexities and limitations of using gold substrates for monolayer exfoliation.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2887708109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2887708109</sourcerecordid><originalsourceid>FETCH-proquest_journals_28877081093</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCBbtOxxw0aEQE2vjLIogbp2kUEJ7eiMkNadFfHsv-ABO__D9ExYIKTeR2goxYyFRxzkXu0TEsQzY5YpFo21baAM0eN1aaG05FljC4HpnXP2lvtGE8DlrJHAVVPgAo5_o4eZTzFZ5nK0XbFppQxj-OmfL0zE9nKPeu_uINOSdG719Uy6UShKuNnwv_7te2mk8gw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887708109</pqid></control><display><type>article</type><title>Mechanical strain induced topological phase changes of few layer ZrTe\(_5\)</title><source>Free E- Journals</source><creator>Tajkov, Zoltán ; Konrád Kandrai ; Nagy, Dániel ; Tapasztó, Levente ; Koltai, János ; Nemes-Incze, Péter</creator><creatorcontrib>Tajkov, Zoltán ; Konrád Kandrai ; Nagy, Dániel ; Tapasztó, Levente ; Koltai, János ; Nemes-Incze, Péter</creatorcontrib><description>Understanding the topological aspects of the band structure of solids has fundamentally changed our appreciation of their properties. The layered, van der Waals transition-metal pentatelluride ZrTe\(_5\) has proven on numerous occasions to be an excellent candidate for the study of controllable topological phase transitions. Here, we investigate the topological phase diagrams of monolayer and bilayer forms of ZrTe\(_5\), under mechanical deformations using \textit{ab initio} techniques. We find that mechanical deformation can close the monolayer's topological gap, while the bilayer exhibits richer phase diagram, including both topological insulating, trivial metallic and insulating phases. The bilayer is predicted to be on the topological phase boundary. We also address the preparation of monolayers, using \emph{ab initio} simulations and experimental scanning tunneling microscopy measurements. We confirm that while monolayer ZrTe\(_5\) is difficult to exfoliate without compromising its crystalline structure, bilayers offer a more stable alternative, revealing the complexities and limitations of using gold substrates for monolayer exfoliation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Band structure of solids ; Bilayers ; Controllability ; Deformation ; Monolayers ; Phase diagrams ; Phase transitions ; Scanning tunneling microscopy ; Strain ; Substrates ; Topology ; Transition metals</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Tajkov, Zoltán</creatorcontrib><creatorcontrib>Konrád Kandrai</creatorcontrib><creatorcontrib>Nagy, Dániel</creatorcontrib><creatorcontrib>Tapasztó, Levente</creatorcontrib><creatorcontrib>Koltai, János</creatorcontrib><creatorcontrib>Nemes-Incze, Péter</creatorcontrib><title>Mechanical strain induced topological phase changes of few layer ZrTe\(_5\)</title><title>arXiv.org</title><description>Understanding the topological aspects of the band structure of solids has fundamentally changed our appreciation of their properties. The layered, van der Waals transition-metal pentatelluride ZrTe\(_5\) has proven on numerous occasions to be an excellent candidate for the study of controllable topological phase transitions. Here, we investigate the topological phase diagrams of monolayer and bilayer forms of ZrTe\(_5\), under mechanical deformations using \textit{ab initio} techniques. We find that mechanical deformation can close the monolayer's topological gap, while the bilayer exhibits richer phase diagram, including both topological insulating, trivial metallic and insulating phases. The bilayer is predicted to be on the topological phase boundary. We also address the preparation of monolayers, using \emph{ab initio} simulations and experimental scanning tunneling microscopy measurements. We confirm that while monolayer ZrTe\(_5\) is difficult to exfoliate without compromising its crystalline structure, bilayers offer a more stable alternative, revealing the complexities and limitations of using gold substrates for monolayer exfoliation.</description><subject>Band structure of solids</subject><subject>Bilayers</subject><subject>Controllability</subject><subject>Deformation</subject><subject>Monolayers</subject><subject>Phase diagrams</subject><subject>Phase transitions</subject><subject>Scanning tunneling microscopy</subject><subject>Strain</subject><subject>Substrates</subject><subject>Topology</subject><subject>Transition metals</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrsKwjAUgOEgCBbtOxxw0aEQE2vjLIogbp2kUEJ7eiMkNadFfHsv-ABO__D9ExYIKTeR2goxYyFRxzkXu0TEsQzY5YpFo21baAM0eN1aaG05FljC4HpnXP2lvtGE8DlrJHAVVPgAo5_o4eZTzFZ5nK0XbFppQxj-OmfL0zE9nKPeu_uINOSdG719Uy6UShKuNnwv_7te2mk8gw</recordid><startdate>20231108</startdate><enddate>20231108</enddate><creator>Tajkov, Zoltán</creator><creator>Konrád Kandrai</creator><creator>Nagy, Dániel</creator><creator>Tapasztó, Levente</creator><creator>Koltai, János</creator><creator>Nemes-Incze, Péter</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231108</creationdate><title>Mechanical strain induced topological phase changes of few layer ZrTe\(_5\)</title><author>Tajkov, Zoltán ; Konrád Kandrai ; Nagy, Dániel ; Tapasztó, Levente ; Koltai, János ; Nemes-Incze, Péter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28877081093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Band structure of solids</topic><topic>Bilayers</topic><topic>Controllability</topic><topic>Deformation</topic><topic>Monolayers</topic><topic>Phase diagrams</topic><topic>Phase transitions</topic><topic>Scanning tunneling microscopy</topic><topic>Strain</topic><topic>Substrates</topic><topic>Topology</topic><topic>Transition metals</topic><toplevel>online_resources</toplevel><creatorcontrib>Tajkov, Zoltán</creatorcontrib><creatorcontrib>Konrád Kandrai</creatorcontrib><creatorcontrib>Nagy, Dániel</creatorcontrib><creatorcontrib>Tapasztó, Levente</creatorcontrib><creatorcontrib>Koltai, János</creatorcontrib><creatorcontrib>Nemes-Incze, Péter</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tajkov, Zoltán</au><au>Konrád Kandrai</au><au>Nagy, Dániel</au><au>Tapasztó, Levente</au><au>Koltai, János</au><au>Nemes-Incze, Péter</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Mechanical strain induced topological phase changes of few layer ZrTe\(_5\)</atitle><jtitle>arXiv.org</jtitle><date>2023-11-08</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Understanding the topological aspects of the band structure of solids has fundamentally changed our appreciation of their properties. The layered, van der Waals transition-metal pentatelluride ZrTe\(_5\) has proven on numerous occasions to be an excellent candidate for the study of controllable topological phase transitions. Here, we investigate the topological phase diagrams of monolayer and bilayer forms of ZrTe\(_5\), under mechanical deformations using \textit{ab initio} techniques. We find that mechanical deformation can close the monolayer's topological gap, while the bilayer exhibits richer phase diagram, including both topological insulating, trivial metallic and insulating phases. The bilayer is predicted to be on the topological phase boundary. We also address the preparation of monolayers, using \emph{ab initio} simulations and experimental scanning tunneling microscopy measurements. We confirm that while monolayer ZrTe\(_5\) is difficult to exfoliate without compromising its crystalline structure, bilayers offer a more stable alternative, revealing the complexities and limitations of using gold substrates for monolayer exfoliation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2887708109
source Free E- Journals
subjects Band structure of solids
Bilayers
Controllability
Deformation
Monolayers
Phase diagrams
Phase transitions
Scanning tunneling microscopy
Strain
Substrates
Topology
Transition metals
title Mechanical strain induced topological phase changes of few layer ZrTe\(_5\)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A38%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Mechanical%20strain%20induced%20topological%20phase%20changes%20of%20few%20layer%20ZrTe%5C(_5%5C)&rft.jtitle=arXiv.org&rft.au=Tajkov,%20Zolt%C3%A1n&rft.date=2023-11-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2887708109%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2887708109&rft_id=info:pmid/&rfr_iscdi=true