DeepInspect: An AI-Powered Defect Detection for Manufacturing Industries
Utilizing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Generative Adversarial Networks (GANs), our system introduces an innovative approach to defect detection in manufacturing. This technology excels in precisely identifying faults by extracting intricate details from...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-11 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kumbhar, Arti Chougule, Amruta Lokhande, Priya Navaghane, Saloni Burud, Aditi Saee Nimbalkar |
description | Utilizing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Generative Adversarial Networks (GANs), our system introduces an innovative approach to defect detection in manufacturing. This technology excels in precisely identifying faults by extracting intricate details from product photographs, utilizing RNNs to detect evolving errors and generating synthetic defect data to bolster the model's robustness and adaptability across various defect scenarios. The project leverages a deep learning framework to automate real-time flaw detection in the manufacturing process. It harnesses extensive datasets of annotated images to discern complex defect patterns. This integrated system seamlessly fits into production workflows, thereby boosting efficiency and elevating product quality. As a result, it reduces waste and operational costs, ultimately enhancing market competitiveness. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2887706050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2887706050</sourcerecordid><originalsourceid>FETCH-proquest_journals_28877060503</originalsourceid><addsrcrecordid>eNqNyr0KwjAUhuEgCBbtPQScCzGxP7gVq7SD4OBeQnsiLXJScxK8fTN4AU4PvN-3YolU6pBVRyk3LCWahRCyKGWeq4S1DcDSIS0w-BOvkddddrcfcDDyBkysER-ZLHJjHb9pDEYPPrgJn7zDMZB3E9COrY1-EaQ_t2x_vTzObbY4-w5Avp9tcBinXlZVWYpC5EL99_oC3dk7fA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887706050</pqid></control><display><type>article</type><title>DeepInspect: An AI-Powered Defect Detection for Manufacturing Industries</title><source>Free E- Journals</source><creator>Kumbhar, Arti ; Chougule, Amruta ; Lokhande, Priya ; Navaghane, Saloni ; Burud, Aditi ; Saee Nimbalkar</creator><creatorcontrib>Kumbhar, Arti ; Chougule, Amruta ; Lokhande, Priya ; Navaghane, Saloni ; Burud, Aditi ; Saee Nimbalkar</creatorcontrib><description>Utilizing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Generative Adversarial Networks (GANs), our system introduces an innovative approach to defect detection in manufacturing. This technology excels in precisely identifying faults by extracting intricate details from product photographs, utilizing RNNs to detect evolving errors and generating synthetic defect data to bolster the model's robustness and adaptability across various defect scenarios. The project leverages a deep learning framework to automate real-time flaw detection in the manufacturing process. It harnesses extensive datasets of annotated images to discern complex defect patterns. This integrated system seamlessly fits into production workflows, thereby boosting efficiency and elevating product quality. As a result, it reduces waste and operational costs, ultimately enhancing market competitiveness.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Defects ; Fault detection ; Flaw detection ; Generative adversarial networks ; Harnesses ; Machine learning ; Manufacturing ; Recurrent neural networks</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Kumbhar, Arti</creatorcontrib><creatorcontrib>Chougule, Amruta</creatorcontrib><creatorcontrib>Lokhande, Priya</creatorcontrib><creatorcontrib>Navaghane, Saloni</creatorcontrib><creatorcontrib>Burud, Aditi</creatorcontrib><creatorcontrib>Saee Nimbalkar</creatorcontrib><title>DeepInspect: An AI-Powered Defect Detection for Manufacturing Industries</title><title>arXiv.org</title><description>Utilizing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Generative Adversarial Networks (GANs), our system introduces an innovative approach to defect detection in manufacturing. This technology excels in precisely identifying faults by extracting intricate details from product photographs, utilizing RNNs to detect evolving errors and generating synthetic defect data to bolster the model's robustness and adaptability across various defect scenarios. The project leverages a deep learning framework to automate real-time flaw detection in the manufacturing process. It harnesses extensive datasets of annotated images to discern complex defect patterns. This integrated system seamlessly fits into production workflows, thereby boosting efficiency and elevating product quality. As a result, it reduces waste and operational costs, ultimately enhancing market competitiveness.</description><subject>Artificial neural networks</subject><subject>Defects</subject><subject>Fault detection</subject><subject>Flaw detection</subject><subject>Generative adversarial networks</subject><subject>Harnesses</subject><subject>Machine learning</subject><subject>Manufacturing</subject><subject>Recurrent neural networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUhuEgCBbtPQScCzGxP7gVq7SD4OBeQnsiLXJScxK8fTN4AU4PvN-3YolU6pBVRyk3LCWahRCyKGWeq4S1DcDSIS0w-BOvkddddrcfcDDyBkysER-ZLHJjHb9pDEYPPrgJn7zDMZB3E9COrY1-EaQ_t2x_vTzObbY4-w5Avp9tcBinXlZVWYpC5EL99_oC3dk7fA</recordid><startdate>20231108</startdate><enddate>20231108</enddate><creator>Kumbhar, Arti</creator><creator>Chougule, Amruta</creator><creator>Lokhande, Priya</creator><creator>Navaghane, Saloni</creator><creator>Burud, Aditi</creator><creator>Saee Nimbalkar</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231108</creationdate><title>DeepInspect: An AI-Powered Defect Detection for Manufacturing Industries</title><author>Kumbhar, Arti ; Chougule, Amruta ; Lokhande, Priya ; Navaghane, Saloni ; Burud, Aditi ; Saee Nimbalkar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28877060503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Defects</topic><topic>Fault detection</topic><topic>Flaw detection</topic><topic>Generative adversarial networks</topic><topic>Harnesses</topic><topic>Machine learning</topic><topic>Manufacturing</topic><topic>Recurrent neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Kumbhar, Arti</creatorcontrib><creatorcontrib>Chougule, Amruta</creatorcontrib><creatorcontrib>Lokhande, Priya</creatorcontrib><creatorcontrib>Navaghane, Saloni</creatorcontrib><creatorcontrib>Burud, Aditi</creatorcontrib><creatorcontrib>Saee Nimbalkar</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumbhar, Arti</au><au>Chougule, Amruta</au><au>Lokhande, Priya</au><au>Navaghane, Saloni</au><au>Burud, Aditi</au><au>Saee Nimbalkar</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>DeepInspect: An AI-Powered Defect Detection for Manufacturing Industries</atitle><jtitle>arXiv.org</jtitle><date>2023-11-08</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Utilizing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Generative Adversarial Networks (GANs), our system introduces an innovative approach to defect detection in manufacturing. This technology excels in precisely identifying faults by extracting intricate details from product photographs, utilizing RNNs to detect evolving errors and generating synthetic defect data to bolster the model's robustness and adaptability across various defect scenarios. The project leverages a deep learning framework to automate real-time flaw detection in the manufacturing process. It harnesses extensive datasets of annotated images to discern complex defect patterns. This integrated system seamlessly fits into production workflows, thereby boosting efficiency and elevating product quality. As a result, it reduces waste and operational costs, ultimately enhancing market competitiveness.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2887706050 |
source | Free E- Journals |
subjects | Artificial neural networks Defects Fault detection Flaw detection Generative adversarial networks Harnesses Machine learning Manufacturing Recurrent neural networks |
title | DeepInspect: An AI-Powered Defect Detection for Manufacturing Industries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A20%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=DeepInspect:%20An%20AI-Powered%20Defect%20Detection%20for%20Manufacturing%20Industries&rft.jtitle=arXiv.org&rft.au=Kumbhar,%20Arti&rft.date=2023-11-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2887706050%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2887706050&rft_id=info:pmid/&rfr_iscdi=true |