DeepInspect: An AI-Powered Defect Detection for Manufacturing Industries

Utilizing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Generative Adversarial Networks (GANs), our system introduces an innovative approach to defect detection in manufacturing. This technology excels in precisely identifying faults by extracting intricate details from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-11
Hauptverfasser: Kumbhar, Arti, Chougule, Amruta, Lokhande, Priya, Navaghane, Saloni, Burud, Aditi, Saee Nimbalkar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kumbhar, Arti
Chougule, Amruta
Lokhande, Priya
Navaghane, Saloni
Burud, Aditi
Saee Nimbalkar
description Utilizing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Generative Adversarial Networks (GANs), our system introduces an innovative approach to defect detection in manufacturing. This technology excels in precisely identifying faults by extracting intricate details from product photographs, utilizing RNNs to detect evolving errors and generating synthetic defect data to bolster the model's robustness and adaptability across various defect scenarios. The project leverages a deep learning framework to automate real-time flaw detection in the manufacturing process. It harnesses extensive datasets of annotated images to discern complex defect patterns. This integrated system seamlessly fits into production workflows, thereby boosting efficiency and elevating product quality. As a result, it reduces waste and operational costs, ultimately enhancing market competitiveness.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2887706050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2887706050</sourcerecordid><originalsourceid>FETCH-proquest_journals_28877060503</originalsourceid><addsrcrecordid>eNqNyr0KwjAUhuEgCBbtPQScCzGxP7gVq7SD4OBeQnsiLXJScxK8fTN4AU4PvN-3YolU6pBVRyk3LCWahRCyKGWeq4S1DcDSIS0w-BOvkddddrcfcDDyBkysER-ZLHJjHb9pDEYPPrgJn7zDMZB3E9COrY1-EaQ_t2x_vTzObbY4-w5Avp9tcBinXlZVWYpC5EL99_oC3dk7fA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887706050</pqid></control><display><type>article</type><title>DeepInspect: An AI-Powered Defect Detection for Manufacturing Industries</title><source>Free E- Journals</source><creator>Kumbhar, Arti ; Chougule, Amruta ; Lokhande, Priya ; Navaghane, Saloni ; Burud, Aditi ; Saee Nimbalkar</creator><creatorcontrib>Kumbhar, Arti ; Chougule, Amruta ; Lokhande, Priya ; Navaghane, Saloni ; Burud, Aditi ; Saee Nimbalkar</creatorcontrib><description>Utilizing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Generative Adversarial Networks (GANs), our system introduces an innovative approach to defect detection in manufacturing. This technology excels in precisely identifying faults by extracting intricate details from product photographs, utilizing RNNs to detect evolving errors and generating synthetic defect data to bolster the model's robustness and adaptability across various defect scenarios. The project leverages a deep learning framework to automate real-time flaw detection in the manufacturing process. It harnesses extensive datasets of annotated images to discern complex defect patterns. This integrated system seamlessly fits into production workflows, thereby boosting efficiency and elevating product quality. As a result, it reduces waste and operational costs, ultimately enhancing market competitiveness.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Defects ; Fault detection ; Flaw detection ; Generative adversarial networks ; Harnesses ; Machine learning ; Manufacturing ; Recurrent neural networks</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Kumbhar, Arti</creatorcontrib><creatorcontrib>Chougule, Amruta</creatorcontrib><creatorcontrib>Lokhande, Priya</creatorcontrib><creatorcontrib>Navaghane, Saloni</creatorcontrib><creatorcontrib>Burud, Aditi</creatorcontrib><creatorcontrib>Saee Nimbalkar</creatorcontrib><title>DeepInspect: An AI-Powered Defect Detection for Manufacturing Industries</title><title>arXiv.org</title><description>Utilizing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Generative Adversarial Networks (GANs), our system introduces an innovative approach to defect detection in manufacturing. This technology excels in precisely identifying faults by extracting intricate details from product photographs, utilizing RNNs to detect evolving errors and generating synthetic defect data to bolster the model's robustness and adaptability across various defect scenarios. The project leverages a deep learning framework to automate real-time flaw detection in the manufacturing process. It harnesses extensive datasets of annotated images to discern complex defect patterns. This integrated system seamlessly fits into production workflows, thereby boosting efficiency and elevating product quality. As a result, it reduces waste and operational costs, ultimately enhancing market competitiveness.</description><subject>Artificial neural networks</subject><subject>Defects</subject><subject>Fault detection</subject><subject>Flaw detection</subject><subject>Generative adversarial networks</subject><subject>Harnesses</subject><subject>Machine learning</subject><subject>Manufacturing</subject><subject>Recurrent neural networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUhuEgCBbtPQScCzGxP7gVq7SD4OBeQnsiLXJScxK8fTN4AU4PvN-3YolU6pBVRyk3LCWahRCyKGWeq4S1DcDSIS0w-BOvkddddrcfcDDyBkysER-ZLHJjHb9pDEYPPrgJn7zDMZB3E9COrY1-EaQ_t2x_vTzObbY4-w5Avp9tcBinXlZVWYpC5EL99_oC3dk7fA</recordid><startdate>20231108</startdate><enddate>20231108</enddate><creator>Kumbhar, Arti</creator><creator>Chougule, Amruta</creator><creator>Lokhande, Priya</creator><creator>Navaghane, Saloni</creator><creator>Burud, Aditi</creator><creator>Saee Nimbalkar</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231108</creationdate><title>DeepInspect: An AI-Powered Defect Detection for Manufacturing Industries</title><author>Kumbhar, Arti ; Chougule, Amruta ; Lokhande, Priya ; Navaghane, Saloni ; Burud, Aditi ; Saee Nimbalkar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28877060503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Defects</topic><topic>Fault detection</topic><topic>Flaw detection</topic><topic>Generative adversarial networks</topic><topic>Harnesses</topic><topic>Machine learning</topic><topic>Manufacturing</topic><topic>Recurrent neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Kumbhar, Arti</creatorcontrib><creatorcontrib>Chougule, Amruta</creatorcontrib><creatorcontrib>Lokhande, Priya</creatorcontrib><creatorcontrib>Navaghane, Saloni</creatorcontrib><creatorcontrib>Burud, Aditi</creatorcontrib><creatorcontrib>Saee Nimbalkar</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumbhar, Arti</au><au>Chougule, Amruta</au><au>Lokhande, Priya</au><au>Navaghane, Saloni</au><au>Burud, Aditi</au><au>Saee Nimbalkar</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>DeepInspect: An AI-Powered Defect Detection for Manufacturing Industries</atitle><jtitle>arXiv.org</jtitle><date>2023-11-08</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Utilizing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Generative Adversarial Networks (GANs), our system introduces an innovative approach to defect detection in manufacturing. This technology excels in precisely identifying faults by extracting intricate details from product photographs, utilizing RNNs to detect evolving errors and generating synthetic defect data to bolster the model's robustness and adaptability across various defect scenarios. The project leverages a deep learning framework to automate real-time flaw detection in the manufacturing process. It harnesses extensive datasets of annotated images to discern complex defect patterns. This integrated system seamlessly fits into production workflows, thereby boosting efficiency and elevating product quality. As a result, it reduces waste and operational costs, ultimately enhancing market competitiveness.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2887706050
source Free E- Journals
subjects Artificial neural networks
Defects
Fault detection
Flaw detection
Generative adversarial networks
Harnesses
Machine learning
Manufacturing
Recurrent neural networks
title DeepInspect: An AI-Powered Defect Detection for Manufacturing Industries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A20%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=DeepInspect:%20An%20AI-Powered%20Defect%20Detection%20for%20Manufacturing%20Industries&rft.jtitle=arXiv.org&rft.au=Kumbhar,%20Arti&rft.date=2023-11-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2887706050%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2887706050&rft_id=info:pmid/&rfr_iscdi=true