Mean values of multiplicative functions and applications to the distribution of the sum of divisors

We provide uniform bounds on mean values of multiplicative functions under very general hypotheses, detecting certain power savings missed in known results in the literature. As an application, we study the distribution of the sum-of-divisors function \(\sigma(n)\) in coprime residue classes to modu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-11
1. Verfasser: Akash Singha Roy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Akash Singha Roy
description We provide uniform bounds on mean values of multiplicative functions under very general hypotheses, detecting certain power savings missed in known results in the literature. As an application, we study the distribution of the sum-of-divisors function \(\sigma(n)\) in coprime residue classes to moduli \(q \le (\log x)^K\), obtaining extensions of results of Śliwa that are uniform in a wide range of \(q\) and optimal in various parameters. As a consequence of our results, we obtain that the values of \(\sigma(n)\) sampled over \(n \le x\) with \(\sigma(n)\) coprime to \(q\) are asymptotically equidistributed among the coprime residue classes mod \(q\), uniformly for odd \(q \le (\log x)^K\). On the other hand, if \(q\) is even, then equidistribution is restored provided we restrict to inputs \(n\) having sufficiently many prime divisors exceeding \(q\).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2887705976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2887705976</sourcerecordid><originalsourceid>FETCH-proquest_journals_28877059763</originalsourceid><addsrcrecordid>eNqNjUEKwjAURIMgWLR3CLguxMQ2dS2KG3fuS2xT_CVNan7S89tAD-BqhjfDzIZkXIhTUZ8535EccWCM8UryshQZaZ9aWTorEzVS19MxmgCTgVYFmDXto20DOItU2Y6qaU0SCI6Gj6YdYPDwjgmmgcQwjsl2MAM6jwey7ZVBna-6J8f77XV9FJN33-U3NIOL3i5Rw-taSlZeZCX-a_0ATw5G-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887705976</pqid></control><display><type>article</type><title>Mean values of multiplicative functions and applications to the distribution of the sum of divisors</title><source>Free E- Journals</source><creator>Akash Singha Roy</creator><creatorcontrib>Akash Singha Roy</creatorcontrib><description>We provide uniform bounds on mean values of multiplicative functions under very general hypotheses, detecting certain power savings missed in known results in the literature. As an application, we study the distribution of the sum-of-divisors function \(\sigma(n)\) in coprime residue classes to moduli \(q \le (\log x)^K\), obtaining extensions of results of Śliwa that are uniform in a wide range of \(q\) and optimal in various parameters. As a consequence of our results, we obtain that the values of \(\sigma(n)\) sampled over \(n \le x\) with \(\sigma(n)\) coprime to \(q\) are asymptotically equidistributed among the coprime residue classes mod \(q\), uniformly for odd \(q \le (\log x)^K\). On the other hand, if \(q\) is even, then equidistribution is restored provided we restrict to inputs \(n\) having sufficiently many prime divisors exceeding \(q\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Residues</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Akash Singha Roy</creatorcontrib><title>Mean values of multiplicative functions and applications to the distribution of the sum of divisors</title><title>arXiv.org</title><description>We provide uniform bounds on mean values of multiplicative functions under very general hypotheses, detecting certain power savings missed in known results in the literature. As an application, we study the distribution of the sum-of-divisors function \(\sigma(n)\) in coprime residue classes to moduli \(q \le (\log x)^K\), obtaining extensions of results of Śliwa that are uniform in a wide range of \(q\) and optimal in various parameters. As a consequence of our results, we obtain that the values of \(\sigma(n)\) sampled over \(n \le x\) with \(\sigma(n)\) coprime to \(q\) are asymptotically equidistributed among the coprime residue classes mod \(q\), uniformly for odd \(q \le (\log x)^K\). On the other hand, if \(q\) is even, then equidistribution is restored provided we restrict to inputs \(n\) having sufficiently many prime divisors exceeding \(q\).</description><subject>Residues</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjUEKwjAURIMgWLR3CLguxMQ2dS2KG3fuS2xT_CVNan7S89tAD-BqhjfDzIZkXIhTUZ8535EccWCM8UryshQZaZ9aWTorEzVS19MxmgCTgVYFmDXto20DOItU2Y6qaU0SCI6Gj6YdYPDwjgmmgcQwjsl2MAM6jwey7ZVBna-6J8f77XV9FJN33-U3NIOL3i5Rw-taSlZeZCX-a_0ATw5G-g</recordid><startdate>20231107</startdate><enddate>20231107</enddate><creator>Akash Singha Roy</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231107</creationdate><title>Mean values of multiplicative functions and applications to the distribution of the sum of divisors</title><author>Akash Singha Roy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28877059763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Residues</topic><toplevel>online_resources</toplevel><creatorcontrib>Akash Singha Roy</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akash Singha Roy</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Mean values of multiplicative functions and applications to the distribution of the sum of divisors</atitle><jtitle>arXiv.org</jtitle><date>2023-11-07</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We provide uniform bounds on mean values of multiplicative functions under very general hypotheses, detecting certain power savings missed in known results in the literature. As an application, we study the distribution of the sum-of-divisors function \(\sigma(n)\) in coprime residue classes to moduli \(q \le (\log x)^K\), obtaining extensions of results of Śliwa that are uniform in a wide range of \(q\) and optimal in various parameters. As a consequence of our results, we obtain that the values of \(\sigma(n)\) sampled over \(n \le x\) with \(\sigma(n)\) coprime to \(q\) are asymptotically equidistributed among the coprime residue classes mod \(q\), uniformly for odd \(q \le (\log x)^K\). On the other hand, if \(q\) is even, then equidistribution is restored provided we restrict to inputs \(n\) having sufficiently many prime divisors exceeding \(q\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2887705976
source Free E- Journals
subjects Residues
title Mean values of multiplicative functions and applications to the distribution of the sum of divisors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A30%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Mean%20values%20of%20multiplicative%20functions%20and%20applications%20to%20the%20distribution%20of%20the%20sum%20of%20divisors&rft.jtitle=arXiv.org&rft.au=Akash%20Singha%20Roy&rft.date=2023-11-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2887705976%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2887705976&rft_id=info:pmid/&rfr_iscdi=true