An innovative scheme for smart school bus tracking system using machine learning and IoT techniques

Thousands of students use school transportation around the world. We require a transportation system that is effective, reliable, safe, and smart. The suggested system depicts a transportation concept that provides real-time tracking, calculates optimal routes to destinations, detects intrusion, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Aiswarya, K., Sriram, A., Raja, E., Gandhimathi, G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2946
creator Aiswarya, K.
Sriram, A.
Raja, E.
Gandhimathi, G.
description Thousands of students use school transportation around the world. We require a transportation system that is effective, reliable, safe, and smart. The suggested system depicts a transportation concept that provides real-time tracking, calculates optimal routes to destinations, detects intrusion, and assists in the maintenance of transportation system statistical data. IR sensors and RFID tags are used to create an IoT network. The detection of intrusion is done via facial recognition. Google Maps, GPS, and accelerometer data are used to detect live location. A bus-mounted Arduino Uno3 microcontroller interfaces with a centralised Firebase cloud platform. Admins and parents can access the mapped data via a mobile application. The system saves important data such as driving abilities, attendance analysis, and the optimal routes. In the ML optimizer, the data is effectively used.
doi_str_mv 10.1063/5.0179249
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2887689026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2887689026</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-222886a2b6529f669c4e02647fc2790dbb2d859dc4550edb8f6b273a2700f0a33</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKsH_0HAm7A1H5tkcyzFj0LBSwVvIZvNuqndpCbZQv-9u7Snl3cYnmEGgEeMFhhx-sIWCAtJSnkFZpgxXAiO-TWYISTLgpT0-xbcpbRDiEghqhkwSw-d9-GosztamExnewvbEGHqdcyTEMIe1kOCOWrz6_wPTKeUbQ-HND29Np3zFu6tjn4StG_gOmxhtqbz7m-w6R7ctHqf7MPlzsHX2-t29VFsPt_Xq-WmOGBKc0EIqSquSc0ZkS3n0pQWEV6K1hAhUVPXpKmYbEzJGLJNXbW8JoJqIhBqkaZ0Dp7O3EMMU25WuzBEP0aqkSx4JUfc6Ho-u5JxeWwdvDpEN5Y9KYzUNKJi6jIi_Qe-S2QC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2887689026</pqid></control><display><type>conference_proceeding</type><title>An innovative scheme for smart school bus tracking system using machine learning and IoT techniques</title><source>AIP Journals Complete</source><creator>Aiswarya, K. ; Sriram, A. ; Raja, E. ; Gandhimathi, G.</creator><contributor>Doss, Arockia Selvakumar Arockia ; Schilberg, Daniel ; Short, Michael</contributor><creatorcontrib>Aiswarya, K. ; Sriram, A. ; Raja, E. ; Gandhimathi, G. ; Doss, Arockia Selvakumar Arockia ; Schilberg, Daniel ; Short, Michael</creatorcontrib><description>Thousands of students use school transportation around the world. We require a transportation system that is effective, reliable, safe, and smart. The suggested system depicts a transportation concept that provides real-time tracking, calculates optimal routes to destinations, detects intrusion, and assists in the maintenance of transportation system statistical data. IR sensors and RFID tags are used to create an IoT network. The detection of intrusion is done via facial recognition. Google Maps, GPS, and accelerometer data are used to detect live location. A bus-mounted Arduino Uno3 microcontroller interfaces with a centralised Firebase cloud platform. Admins and parents can access the mapped data via a mobile application. The system saves important data such as driving abilities, attendance analysis, and the optimal routes. In the ML optimizer, the data is effectively used.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0179249</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Accelerometers ; Applications programs ; Face recognition ; Intrusion ; Machine learning ; Mobile computing ; Tracking systems ; Transportation systems</subject><ispartof>AIP conference proceedings, 2023, Vol.2946 (1)</ispartof><rights>AIP Publishing LLC</rights><rights>2023 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0179249$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Doss, Arockia Selvakumar Arockia</contributor><contributor>Schilberg, Daniel</contributor><contributor>Short, Michael</contributor><creatorcontrib>Aiswarya, K.</creatorcontrib><creatorcontrib>Sriram, A.</creatorcontrib><creatorcontrib>Raja, E.</creatorcontrib><creatorcontrib>Gandhimathi, G.</creatorcontrib><title>An innovative scheme for smart school bus tracking system using machine learning and IoT techniques</title><title>AIP conference proceedings</title><description>Thousands of students use school transportation around the world. We require a transportation system that is effective, reliable, safe, and smart. The suggested system depicts a transportation concept that provides real-time tracking, calculates optimal routes to destinations, detects intrusion, and assists in the maintenance of transportation system statistical data. IR sensors and RFID tags are used to create an IoT network. The detection of intrusion is done via facial recognition. Google Maps, GPS, and accelerometer data are used to detect live location. A bus-mounted Arduino Uno3 microcontroller interfaces with a centralised Firebase cloud platform. Admins and parents can access the mapped data via a mobile application. The system saves important data such as driving abilities, attendance analysis, and the optimal routes. In the ML optimizer, the data is effectively used.</description><subject>Accelerometers</subject><subject>Applications programs</subject><subject>Face recognition</subject><subject>Intrusion</subject><subject>Machine learning</subject><subject>Mobile computing</subject><subject>Tracking systems</subject><subject>Transportation systems</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1LAzEYhIMoWKsH_0HAm7A1H5tkcyzFj0LBSwVvIZvNuqndpCbZQv-9u7Snl3cYnmEGgEeMFhhx-sIWCAtJSnkFZpgxXAiO-TWYISTLgpT0-xbcpbRDiEghqhkwSw-d9-GosztamExnewvbEGHqdcyTEMIe1kOCOWrz6_wPTKeUbQ-HND29Np3zFu6tjn4StG_gOmxhtqbz7m-w6R7ctHqf7MPlzsHX2-t29VFsPt_Xq-WmOGBKc0EIqSquSc0ZkS3n0pQWEV6K1hAhUVPXpKmYbEzJGLJNXbW8JoJqIhBqkaZ0Dp7O3EMMU25WuzBEP0aqkSx4JUfc6Ho-u5JxeWwdvDpEN5Y9KYzUNKJi6jIi_Qe-S2QC</recordid><startdate>20231109</startdate><enddate>20231109</enddate><creator>Aiswarya, K.</creator><creator>Sriram, A.</creator><creator>Raja, E.</creator><creator>Gandhimathi, G.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231109</creationdate><title>An innovative scheme for smart school bus tracking system using machine learning and IoT techniques</title><author>Aiswarya, K. ; Sriram, A. ; Raja, E. ; Gandhimathi, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-222886a2b6529f669c4e02647fc2790dbb2d859dc4550edb8f6b273a2700f0a33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accelerometers</topic><topic>Applications programs</topic><topic>Face recognition</topic><topic>Intrusion</topic><topic>Machine learning</topic><topic>Mobile computing</topic><topic>Tracking systems</topic><topic>Transportation systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aiswarya, K.</creatorcontrib><creatorcontrib>Sriram, A.</creatorcontrib><creatorcontrib>Raja, E.</creatorcontrib><creatorcontrib>Gandhimathi, G.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aiswarya, K.</au><au>Sriram, A.</au><au>Raja, E.</au><au>Gandhimathi, G.</au><au>Doss, Arockia Selvakumar Arockia</au><au>Schilberg, Daniel</au><au>Short, Michael</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An innovative scheme for smart school bus tracking system using machine learning and IoT techniques</atitle><btitle>AIP conference proceedings</btitle><date>2023-11-09</date><risdate>2023</risdate><volume>2946</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Thousands of students use school transportation around the world. We require a transportation system that is effective, reliable, safe, and smart. The suggested system depicts a transportation concept that provides real-time tracking, calculates optimal routes to destinations, detects intrusion, and assists in the maintenance of transportation system statistical data. IR sensors and RFID tags are used to create an IoT network. The detection of intrusion is done via facial recognition. Google Maps, GPS, and accelerometer data are used to detect live location. A bus-mounted Arduino Uno3 microcontroller interfaces with a centralised Firebase cloud platform. Admins and parents can access the mapped data via a mobile application. The system saves important data such as driving abilities, attendance analysis, and the optimal routes. In the ML optimizer, the data is effectively used.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0179249</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2946 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2887689026
source AIP Journals Complete
subjects Accelerometers
Applications programs
Face recognition
Intrusion
Machine learning
Mobile computing
Tracking systems
Transportation systems
title An innovative scheme for smart school bus tracking system using machine learning and IoT techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A56%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20innovative%20scheme%20for%20smart%20school%20bus%20tracking%20system%20using%20machine%20learning%20and%20IoT%20techniques&rft.btitle=AIP%20conference%20proceedings&rft.au=Aiswarya,%20K.&rft.date=2023-11-09&rft.volume=2946&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0179249&rft_dat=%3Cproquest_scita%3E2887689026%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2887689026&rft_id=info:pmid/&rfr_iscdi=true