Utilisation of heat-treated single-layer graphene as an electrode for hybrid solar cell applications

There has been tremendous research progress among scientists in the development of hybrid solar cells (HSC) as green solar energy. The research aims to investigate the influence of several types of transparent conductive electrodes on the performance of fabricated HSC. Single-layer graphene (SG)-bas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2023-12, Vol.129 (12), Article 829
Hauptverfasser: Shamsudin, M. S., Malek, M. F., Suriani, A. B., Sanip, S. M., Rusop, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There has been tremendous research progress among scientists in the development of hybrid solar cells (HSC) as green solar energy. The research aims to investigate the influence of several types of transparent conductive electrodes on the performance of fabricated HSC. Single-layer graphene (SG)-based film has been identified as a potential replacement for indium tin oxide (ITO)-based film as anode transparent conductive layer (ATCL) in HSC. In this work, we have fabricated ITO-based HSC (ISc), SG-based HSC (GSc), and heat-treated SG-based HSC (HGSc). It was observed that the power conversion efficiency (PCE) was significantly dependent on the types of ATCL. These significant findings are measured by Raman spectroscopy, a UV–Vis spectrophotometer, and a solar simulator. The HGSc possesses the best PCE of 1.960%, compared to 1.225% in the ISc, with an open-circuit voltage ( V oc ) of 0.5 V, a short-circuit photocurrent density ( J sc ) of 11.2 mAcm −2 , and a fill factor (FF) of 0.35. The properties of heat-treated SG-based film were significantly attributed to PCE enhancement in HSC. As a conclusion, the use of graphene-based film has opened up a new research interest in the solar cell fabrication process.
ISSN:0947-8396
1432-0630
DOI:10.1007/s00339-023-07106-x